logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

Updated 2 years ago

image-text-embedding

Image-Text Retrieval Embdding with BLIP

author: David Wang


Description

This operator extracts features for image or text with BLIP which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This is a adaptation from salesforce/BLIP.


Code Example

Load an image from path './teddy.jpg' to generate an image embedding.

Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding.

Write a pipeline with explicit inputs/outputs name specifications:

from towhee.dc2 import pipe, ops, DataCollection

img_pipe = (
    pipe.input('url')
    .map('url', 'img', ops.image_decode.cv2_rgb())
    .map('img', 'vec', ops.image_text_embedding.blip(model_name='blip_itm_base_coco', modality='image'))
    .output('img', 'vec')
)

text_pipe = (
    pipe.input('text')
    .map('text', 'vec', ops.image_text_embedding.blip(model_name='blip_itm_base_coco', modality='text'))
    .output('text', 'vec')
)

DataCollection(img_pipe('./teddy.jpg')).show()
DataCollection(text_pipe('A teddybear on a skateboard in Times Square.')).show()

result1 result2


Factory Constructor

Create the operator via the following factory method

blip(model_name, modality)

Parameters:

model_name: str

​ The model name of BLIP. Supported model names:

  • blip_itm_base_coco
  • blip_itm_large_coco
  • blip_itm_base_flickr
  • blip_itm_large_flickr

modality: str

​ Which modality(image or text) is used to generate the embedding.


Interface

An image-text embedding operator takes a towhee image or string as input and generate an embedding in ndarray.

save_model(format='pytorch', path='default')

Save model to local with specified format.

Parameters:

format: str

​ The format of saved model, defaults to 'pytorch'.

path: str

​ The path where model is saved to. By default, it will save model to the operator directory.

from towhee import ops

op = ops.image_text_embedding.blip(model_name='blip_itm_base_coco', modality='image').get_op()
op.save_model('onnx', 'test.onnx')


Parameters:

data: towhee.types.Image (a sub-class of numpy.ndarray) or str

​ The data (image or text based on specified modality) to generate embedding.

Parameters:

data: towhee.types.Image (a sub-class of numpy.ndarray) or str

​ The data (image or text based on specified modality) to generate embedding.

Returns: numpy.ndarray

​ The data embedding extracted by model.

jinlingxu06 b075fa56c5 add datasets in requirement. 17 Commits
folder-icon configs init the operator 3 years ago
folder-icon models init the operator 3 years ago
file-icon .gitattributes
1.1 KiB
download-icon
Initial commit 3 years ago
file-icon README.md
2.9 KiB
download-icon
add more models to the operator. 2 years ago
file-icon __init__.py
771 B
download-icon
add more models to the operator. 2 years ago
file-icon blip.py
12 KiB
download-icon
update blip. 2 years ago
file-icon requirements.txt
99 B
download-icon
add datasets in requirement. 2 years ago
file-icon tabular1.png
176 KiB
download-icon
refine the readme. 3 years ago
file-icon tabular2.png
22 KiB
download-icon
refine the readme. 3 years ago
file-icon train_blip_with_hf_trainer.py
16 KiB
download-icon
add training for blip. 2 years ago
file-icon train_clip_with_hf_trainer.py
16 KiB
download-icon
add training for blip. 2 years ago
file-icon vec1.png
12 KiB
download-icon
refine the readme. 3 years ago
file-icon vec2.png
12 KiB
download-icon
refine the readme. 3 years ago