clip
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
471 lines
17 KiB
471 lines
17 KiB
2 years ago
|
import logging
|
||
|
import os
|
||
|
import sys
|
||
|
import transformers
|
||
|
import dataclasses
|
||
|
import ipdb
|
||
|
from dataclasses import dataclass, field
|
||
|
from typing import Optional, List
|
||
|
|
||
|
import torch
|
||
|
from datasets import load_dataset
|
||
|
from PIL import Image
|
||
|
from torchvision.io import ImageReadMode, read_image
|
||
|
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize
|
||
|
from torchvision.transforms.functional import InterpolationMode
|
||
|
|
||
|
from transformers import (
|
||
|
MODEL_FOR_CAUSAL_LM_MAPPING,
|
||
|
TrainingArguments,
|
||
|
default_data_collator,
|
||
|
is_torch_tpu_available,
|
||
|
set_seed,
|
||
|
)
|
||
|
|
||
|
# We use torchvision for faster image pre-processing. The transforms are implemented as nn.Module,
|
||
|
# so we jit it to be faster.
|
||
|
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
dataset_name_mapping = {
|
||
|
"image_caption_dataset.py": ("image_path", "caption"),
|
||
|
}
|
||
|
|
||
|
|
||
|
def dataclass_from_dict(klass, d):
|
||
|
try:
|
||
|
fieldtypes = {f.name: f.type for f in dataclasses.fields(klass)}
|
||
|
return klass(**{f: dataclass_from_dict(fieldtypes[f], d[f]) for f in d})
|
||
|
except:
|
||
|
return d # Not a dataclass field
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class DataTrainingArguments:
|
||
|
"""
|
||
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
||
|
"""
|
||
|
|
||
|
dataset_name: Optional[str] = field(
|
||
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
||
|
)
|
||
|
dataset_config_name: Optional[str] = field(
|
||
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
||
|
)
|
||
|
data_dir: Optional[str] = field(default=None, metadata={"help": "The data directory containing input files."})
|
||
|
image_column: Optional[str] = field(
|
||
|
default="image_path",
|
||
|
metadata={"help": "The name of the column in the datasets containing the full image file paths."},
|
||
|
)
|
||
|
caption_column: Optional[str] = field(
|
||
|
default="caption",
|
||
|
metadata={"help": "The name of the column in the datasets containing the image captions."},
|
||
|
)
|
||
|
train_file: Optional[str] = field(
|
||
|
default=None, metadata={"help": "The input training data file (a jsonlines file)."}
|
||
|
)
|
||
|
validation_file: Optional[str] = field(
|
||
|
default=None,
|
||
|
metadata={"help": "An optional input evaluation data file (a jsonlines file)."},
|
||
|
)
|
||
|
max_seq_length: Optional[int] = field(
|
||
|
default=77,
|
||
|
metadata={
|
||
|
"help": (
|
||
|
"The maximum total input sequence length after tokenization. Sequences longer "
|
||
|
"than this will be truncated, sequences shorter will be padded."
|
||
|
)
|
||
|
},
|
||
|
)
|
||
|
max_train_samples: Optional[int] = field(
|
||
|
default=None,
|
||
|
metadata={
|
||
|
"help": (
|
||
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
||
|
"value if set."
|
||
|
)
|
||
|
},
|
||
|
)
|
||
|
max_eval_samples: Optional[int] = field(
|
||
|
default=None,
|
||
|
metadata={
|
||
|
"help": (
|
||
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
||
|
"value if set."
|
||
|
)
|
||
|
},
|
||
|
)
|
||
|
overwrite_cache: bool = field(
|
||
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
||
|
)
|
||
|
preprocessing_num_workers: Optional[int] = field(
|
||
|
default=None,
|
||
|
metadata={"help": "The number of processes to use for the preprocessing."},
|
||
|
)
|
||
|
cache_dir: Optional[str] = field(
|
||
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
|
||
|
)
|
||
|
image_mean: Optional[str] = field(
|
||
|
default=None, metadata={"help": "image preprocessing mean"}
|
||
|
)
|
||
|
image_std: Optional[str] = field(
|
||
|
default=None, metadata={"help": "image preprocessing std"}
|
||
|
)
|
||
|
|
||
|
def __post_init__(self):
|
||
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
||
|
raise ValueError("Need either a dataset name or a training/validation file.")
|
||
|
else:
|
||
|
if self.train_file is not None:
|
||
|
extension = self.train_file.split(".")[-1]
|
||
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
||
|
if self.validation_file is not None:
|
||
|
extension = self.validation_file.split(".")[-1]
|
||
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
|
||
|
if self.validation_file is not None:
|
||
|
extension = self.validation_file.split(".")[-1]
|
||
|
assert extension == "json", "`validation_file` should be a json file."
|
||
|
|
||
|
|
||
|
class Transform(torch.nn.Module):
|
||
|
def __init__(self, image_size, mean, std):
|
||
|
super().__init__()
|
||
|
self.transforms = torch.nn.Sequential(
|
||
|
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
||
|
CenterCrop(image_size),
|
||
|
ConvertImageDtype(torch.float),
|
||
|
Normalize(mean, std),
|
||
|
)
|
||
|
|
||
|
def forward(self, x) -> torch.Tensor:
|
||
|
"""`x` should be an instance of `PIL.Image.Image`"""
|
||
|
with torch.no_grad():
|
||
|
x = self.transforms(x)
|
||
|
return x
|
||
|
|
||
|
def collate_fn(examples):
|
||
|
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
||
|
input_ids = torch.tensor([example["input_ids"] for example in examples], dtype=torch.long)
|
||
|
attention_mask = torch.tensor([example["attention_mask"] for example in examples], dtype=torch.long)
|
||
|
return {
|
||
|
"pixel_values": pixel_values,
|
||
|
"input_ids": input_ids,
|
||
|
"attention_mask": attention_mask,
|
||
|
"return_loss": True,
|
||
|
}
|
||
|
|
||
|
|
||
|
def train_with_hf_trainer(model, tokenizer, data_args, training_args, **kwargs):
|
||
|
|
||
|
import evaluate
|
||
|
import datasets
|
||
|
|
||
|
from transformers import Trainer
|
||
|
from datasets import load_dataset
|
||
|
from towhee.trainer.training_config import get_dataclasses_help
|
||
|
|
||
|
print('**** DataTrainingArguments ****')
|
||
|
get_dataclasses_help(DataTrainingArguments)
|
||
|
data_args = dataclass_from_dict(DataTrainingArguments, data_args)
|
||
|
|
||
|
print('**** TrainingArguments ****')
|
||
|
get_dataclasses_help(TrainingArguments)
|
||
|
training_args = dataclass_from_dict(TrainingArguments, training_args)
|
||
|
|
||
|
# 2. Setup logging
|
||
|
logging.basicConfig(
|
||
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||
|
datefmt="%m/%d/%Y %H:%M:%S",
|
||
|
handlers=[logging.StreamHandler(sys.stdout)],
|
||
|
)
|
||
|
|
||
|
# 2. Setup logging
|
||
|
#+ training_args
|
||
|
#log_level = training_args.get_process_log_level()
|
||
|
log_level = training_args.get_process_log_level()
|
||
|
logger.setLevel(log_level)
|
||
|
transformers.utils.logging.set_verbosity(log_level)
|
||
|
transformers.utils.logging.enable_default_handler()
|
||
|
transformers.utils.logging.enable_explicit_format()
|
||
|
|
||
|
#!!!!!!!!
|
||
|
temp_cache_dir = data_args.cache_dir
|
||
|
# Log on each process the small summary:
|
||
|
#training_args
|
||
|
# +local_rank
|
||
|
# +device
|
||
|
# +n_gpu
|
||
|
# +local_rank
|
||
|
# +fp16
|
||
|
logger.warning(
|
||
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
||
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
||
|
)
|
||
|
logger.info(f"Training/evaluation parameters {training_args}")
|
||
|
|
||
|
# 3. Detecting last checkpoint and eventualy continue from last checkpoint
|
||
|
### place holder ###
|
||
|
### place holder ###
|
||
|
### place holder ###
|
||
|
|
||
|
|
||
|
# 4. Load dataset
|
||
|
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
|
||
|
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
||
|
# (the dataset will be downloaded automatically from the datasets Hub).
|
||
|
#
|
||
|
# For CSV/JSON files this script will use the first column for the full image path and the second column for the
|
||
|
# captions (unless you specify column names for this with the `image_column` and `caption_column` arguments).
|
||
|
#
|
||
|
|
||
|
#data_args
|
||
|
# +dataset_name
|
||
|
# +dataset_config_name
|
||
|
# +cache_dir
|
||
|
# +data_dir
|
||
|
# +train_file
|
||
|
# +validation_file
|
||
|
# +test_file
|
||
|
#model_args
|
||
|
# +use_auth_token
|
||
|
# +cache_dir
|
||
|
if data_args.dataset_name is not None:
|
||
|
# Downloading and loading a dataset from the hub.
|
||
|
dataset = load_dataset(
|
||
|
data_args.dataset_name,
|
||
|
data_args.dataset_config_name,
|
||
|
cache_dir=temp_cache_dir,
|
||
|
keep_in_memory=False,
|
||
|
data_dir=data_args.data_dir,
|
||
|
# use_auth_token=True if model_args.use_auth_token else None,
|
||
|
)
|
||
|
else:
|
||
|
data_files = {}
|
||
|
if data_args.train_file is not None:
|
||
|
data_files["train"] = data_args.train_file
|
||
|
extension = data_args.train_file.split(".")[-1]
|
||
|
if data_args.validation_file is not None:
|
||
|
data_files["validation"] = data_args.validation_file
|
||
|
extension = data_args.validation_file.split(".")[-1]
|
||
|
if data_args.test_file is not None:
|
||
|
data_files["test"] = data_args.test_file
|
||
|
extension = data_args.test_file.split(".")[-1]
|
||
|
dataset = load_dataset(
|
||
|
extension,
|
||
|
data_files=data_files,
|
||
|
cache_dir=temp_cache_dir,
|
||
|
# use_auth_token=True if model_args.use_auth_token else None,
|
||
|
)
|
||
|
# 5. Load pretrained model, tokenizer, and feature extractor
|
||
|
#model_args
|
||
|
# +tokenizer_name
|
||
|
# +cache_dir
|
||
|
# +use_fast_tokenizer
|
||
|
|
||
|
#@if model_args.tokenizer_name:
|
||
|
#@ tokenizer = AutoTokenizer.from_pretrained(
|
||
|
#@ model_args.tokenizer_name, cache_dir=temp_cache_dir, use_fast=model_args.use_fast_tokenizer
|
||
|
#@ )
|
||
|
#@# --- for CLIP, tokenizer is fixed
|
||
|
|
||
|
# Load feature_extractor, in this script we only use this to get the mean and std for normalization.
|
||
|
#model_args
|
||
|
# +feature_extractor_name
|
||
|
# +model_name_or_path
|
||
|
# +cache_dir
|
||
|
# +model_revision
|
||
|
# +use_auth_token
|
||
|
|
||
|
#@feature_extractor = AutoFeatureExtractor.from_pretrained(
|
||
|
#@ model_args.feature_extractor_name or model_args.model_name_or_path,
|
||
|
#@ cache_dir=temp_cache_dir,
|
||
|
#@ revision=model_args.model_revision,
|
||
|
#@ use_auth_token=True if model_args.use_auth_token else None,
|
||
|
#@)
|
||
|
# 只为了拿到mean 和 std
|
||
|
|
||
|
# load model
|
||
|
#@model = AutoModel.from_pretrained()
|
||
|
config = model.config
|
||
|
|
||
|
#选择text或者vision freeze住
|
||
|
#model_args
|
||
|
# +freeze_vision_model
|
||
|
# +freeze_text_model
|
||
|
def _freeze_params(module):
|
||
|
for param in module.parameters():
|
||
|
param.requires_grad = False
|
||
|
|
||
|
if model_args.freeze_vision_model:
|
||
|
_freeze_params(model.vision_model)
|
||
|
|
||
|
if model_args.freeze_text_model:
|
||
|
_freeze_params(model.text_model)
|
||
|
#!!!!!!! freeze
|
||
|
freeze_vision_model = False
|
||
|
freeze_text_model = False
|
||
|
if freeze_vision_model is True:
|
||
|
_freeze_params(model.vision_model)
|
||
|
|
||
|
if freeze_text_model is True:
|
||
|
_freeze_params(model.text_model)
|
||
|
|
||
|
set_seed(training_args.seed)
|
||
|
|
||
|
if training_args.do_train:
|
||
|
column_names = dataset["train"].column_names
|
||
|
elif training_args.do_eval:
|
||
|
column_names = dataset["validation"].column_names
|
||
|
elif training_args.do_predict:
|
||
|
column_names = dataset["test"].column_names
|
||
|
else:
|
||
|
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
|
||
|
return
|
||
|
|
||
|
dataset_columns = dataset_name_mapping.get(data_args.dataset_name, None)
|
||
|
if data_args.image_column is None:
|
||
|
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
|
||
|
else:
|
||
|
image_column = data_args.image_column
|
||
|
if image_column not in column_names:
|
||
|
raise ValueError(
|
||
|
f"--image_column' value '{data_args.image_column}' needs to be one of: {', '.join(column_names)}"
|
||
|
)
|
||
|
if data_args.caption_column is None:
|
||
|
caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
|
||
|
else:
|
||
|
caption_column = data_args.caption_column
|
||
|
if caption_column not in column_names:
|
||
|
raise ValueError(
|
||
|
f"--caption_column' value '{data_args.caption_column}' needs to be one of: {', '.join(column_names)}"
|
||
|
)
|
||
|
|
||
|
|
||
|
#image_column = 'image_path'
|
||
|
#caption_column = 'caption'
|
||
|
|
||
|
image_mean, image_std = data_args.image_mean, data_args.image_std
|
||
|
# 7. Preprocessing the datasets.
|
||
|
# Initialize torchvision transforms and jit it for faster processing.
|
||
|
#这个地方需要image_size,image_mean,image_std
|
||
|
image_transformations = Transform(
|
||
|
config.vision_config.image_size, image_mean, image_std
|
||
|
)
|
||
|
image_transformations = torch.jit.script(image_transformations)
|
||
|
|
||
|
# Preprocessing the datasets.
|
||
|
# We need to tokenize input captions and transform the images.
|
||
|
#data_args
|
||
|
# +max_seq_length
|
||
|
#caption_column
|
||
|
#!!!!!!!!!!!!!!!!!
|
||
|
|
||
|
#from transformers import CLIPTokenizer, CLIPTextModel ,CLIPModel,CLIPProcessor
|
||
|
#tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
||
|
|
||
|
def tokenize_captions(examples):
|
||
|
captions = [caption for caption in examples[caption_column]]
|
||
|
text_inputs = tokenizer(captions, max_length=data_args.max_seq_length, padding="max_length", truncation=True)
|
||
|
examples["input_ids"] = text_inputs.input_ids
|
||
|
examples["attention_mask"] = text_inputs.attention_mask
|
||
|
return examples
|
||
|
|
||
|
def transform_images(examples):
|
||
|
images = [read_image(image_file, mode=ImageReadMode.RGB) for image_file in examples[image_column]]
|
||
|
examples["pixel_values"] = [image_transformations(image) for image in images]
|
||
|
return examples
|
||
|
|
||
|
def filter_corrupt_images(examples):
|
||
|
"""remove problematic images"""
|
||
|
valid_images = []
|
||
|
for image_file in examples[image_column]:
|
||
|
try:
|
||
|
Image.open(image_file)
|
||
|
valid_images.append(True)
|
||
|
except Exception:
|
||
|
valid_images.append(False)
|
||
|
return valid_images
|
||
|
|
||
|
if training_args.do_train:
|
||
|
if "train" not in dataset:
|
||
|
raise ValueError("--do_train requires a train dataset")
|
||
|
train_dataset = dataset["train"]
|
||
|
if data_args.max_train_samples is not None:
|
||
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
||
|
train_dataset = train_dataset.select(range(max_train_samples))
|
||
|
train_dataset = train_dataset.filter(
|
||
|
filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers
|
||
|
)
|
||
|
train_dataset = train_dataset.map(
|
||
|
function=tokenize_captions,
|
||
|
batched=True,
|
||
|
remove_columns=[col for col in column_names if col != image_column],
|
||
|
num_proc=data_args.preprocessing_num_workers,
|
||
|
load_from_cache_file=not data_args.overwrite_cache,
|
||
|
desc="Running tokenizer on train dataset",
|
||
|
)
|
||
|
|
||
|
# Transform images on the fly as doing it on the whole dataset takes too much time.
|
||
|
train_dataset.set_transform(transform_images)
|
||
|
#training_args
|
||
|
# +do_eval
|
||
|
#data_args
|
||
|
# +max_eval_samples
|
||
|
# +preprocessing_num_workers
|
||
|
# +overwrite_cache
|
||
|
if training_args.do_eval:
|
||
|
if "validation" not in dataset:
|
||
|
raise ValueError("--do_eval requires a train validation")
|
||
|
eval_dataset = dataset["validation"]
|
||
|
if data_args.max_eval_samples is not None:
|
||
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
||
|
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
||
|
|
||
|
eval_dataset = eval_dataset.filter(
|
||
|
filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers
|
||
|
)
|
||
|
eval_dataset = eval_dataset.map(
|
||
|
function=tokenize_captions,
|
||
|
batched=True,
|
||
|
num_proc=data_args.preprocessing_num_workers,
|
||
|
remove_columns=[col for col in column_names if col != image_column],
|
||
|
load_from_cache_file=not data_args.overwrite_cache,
|
||
|
desc="Running tokenizer on validation dataset",
|
||
|
)
|
||
|
|
||
|
# Transform images on the fly as doing it on the whole dataset takes too much time.
|
||
|
eval_dataset.set_transform(transform_images)
|
||
|
|
||
|
# 8. Initalize our trainer
|
||
|
trainer = Trainer(
|
||
|
model=model,
|
||
|
args=training_args,
|
||
|
train_dataset=train_dataset if training_args.do_train else None,
|
||
|
eval_dataset=eval_dataset if training_args.do_eval else None,
|
||
|
data_collator=collate_fn,
|
||
|
)
|
||
|
|
||
|
# Training
|
||
|
last_checkpoint = None
|
||
|
if training_args.do_train:
|
||
|
checkpoint = None
|
||
|
if training_args.resume_from_checkpoint is not None:
|
||
|
checkpoint = training_args.resume_from_checkpoint
|
||
|
elif last_checkpoint is not None:
|
||
|
checkpoint = last_checkpoint
|
||
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
||
|
trainer.save_model()
|
||
|
trainer.log_metrics("train", train_result.metrics)
|
||
|
trainer.save_metrics("train", train_result.metrics)
|
||
|
trainer.save_state()
|
||
|
#training_args
|
||
|
# +do_eval
|
||
|
# 10. Evaluation
|
||
|
if training_args.do_eval:
|
||
|
metrics = trainer.evaluate()
|
||
|
trainer.log_metrics("eval", metrics)
|
||
|
trainer.save_metrics("eval", metrics)
|
||
|
|
||
|
|