@ -73,16 +73,10 @@ Create the operator via the following factory method
** *model_name:*** *str*
The model name of CLIP. Supported model names:
- clip_resnet_r50
- clip_resnet_r101
- clip_vit_b32
- clip_vit_b16
- clip_resnet_r50x4
- clip_resnet_r50x16
- clip_resnet_r50x64
- clip_vit_l14
- clip_vit_l14@336px
- clip_vit_base_patch16
- clip_vit_base_patch32
- clip_vit_large_patch14
- clip_vit_large_patch14_336
** *modality:*** *str*
@ -90,12 +84,40 @@ Create the operator via the following factory method
< br / >
***checkpoint_path***: *str*
The path to local checkpoint, defaults to None.
If None, the operator will download and load pretrained model by `model_name` from Huggingface transformers.
## Interface
An image-text embedding operator takes a [towhee image ](link/to/towhee/image/api/doc ) or string as input and generate an embedding in ndarray.
***save_model(format='pytorch', path='default')***
Save model to local with specified format.
**Parameters:**
***format***: *str*
The format of saved model, defaults to 'pytorch'.
***path***: *str*
The path where model is saved to. By default, it will save model to the operator directory.
```python
from towhee import ops
op = ops.image_text_embedding.clip(model_name='clip_vit_base_16', modality='image').get_op()
op.save_model('onnx', 'test.onnx')
```
< br / >
**Parameters:**
@ -109,6 +131,66 @@ An image-text embedding operator takes a [towhee image](link/to/towhee/image/api
The data embedding extracted by model.
***supported_model_names(format=None)***
Get a list of all supported model names or supported model names for specified model format.
**Parameters:**
***format***: *str*
The model format such as 'pytorch', 'torchscript'.
```python
from towhee import ops
op = towhee.ops.image_text_embedding.clip(model_name='clip_vit_base_16', modality='image').get_op()
full_list = op.supported_model_names()
onnx_list = op.supported_model_names(format='onnx')
print(f'Onnx-support/Total Models: {len(onnx_list)}/{len(full_list)}')
```
< br / >
## Fine-tune
### Requirement
If you want to train this operator, besides dependency in requirements.txt, you need install these dependencies.
```python
! python -m pip install datasets evaluate
```
### Get start
```python
import towhee
clip_op = towhee.ops.image_text_embedding.clip(model_name='clip_vit_base_16', modality='image').get_op()
data_args = {
'dataset_name': 'ydshieh/coco_dataset_script',
'dataset_config_name': '2017',
'cache_dir': './cache',
'max_seq_length': 77,
'data_dir': path_to_your_coco_dataset,
'image_mean': [0.48145466, 0.4578275, 0.40821073],
"image_std": [0.26862954, 0.26130258, 0.27577711]
}
training_args = {
'num_train_epochs': 3, # you can add epoch number to get a better metric.
'per_device_train_batch_size': 8,
'per_device_eval_batch_size': 8,
'do_train': True,
'do_eval': True,
'remove_unused_columns': False,
'output_dir': './tmp/test-clip',
'overwrite_output_dir': True,
}
```
### Dive deep and customize your training
You can change the [training script ](https://towhee.io/image-text-embedding/clip/src/branch/main/train_clip_with_hf_trainer.py ) in your customer way.
Or your can refer to the original [hugging face transformers training examples ](https://github.com/huggingface/transformers/tree/main/examples/pytorch/contrastive-image-text ).