japanese-clip
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
784 lines
32 KiB
784 lines
32 KiB
2 years ago
|
# coding=utf-8
|
||
|
# Copyright 2022 rinna Co., Ltd.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import logging
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Any, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
|
||
|
from transformers import AutoModel
|
||
|
from transformers.activations import ACT2FN
|
||
|
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
||
|
from transformers.modeling_utils import PreTrainedModel, ModelOutput
|
||
|
from .configuration_cloob import CLOOBConfig, CLOOBTextConfig, CLOOBVisionConfig
|
||
|
from .loss import cloob_loss
|
||
|
from ..clip.modeling_clip import _expand_mask
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class CLOOBOutput(ModelOutput):
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
inv_tau: Union[torch.FloatTensor, float] = None
|
||
|
text_embeds: torch.FloatTensor = None
|
||
|
image_embeds: torch.FloatTensor = None
|
||
|
text_model_output: BaseModelOutputWithPooling = None
|
||
|
vision_model_output: BaseModelOutputWithPooling = None
|
||
|
|
||
|
def to_tuple(self) -> Tuple[Any]:
|
||
|
return tuple(
|
||
|
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
||
|
for k in self.keys()
|
||
|
)
|
||
|
|
||
|
|
||
|
class CLOOBVisionEmbeddings(nn.Module):
|
||
|
def __init__(self, config: CLOOBVisionConfig):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.image_size = config.image_size
|
||
|
self.patch_size = config.patch_size
|
||
|
|
||
|
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
||
|
|
||
|
self.patch_embedding = nn.Conv2d(
|
||
|
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False
|
||
|
)
|
||
|
|
||
|
self.num_patches = (self.image_size // self.patch_size) ** 2
|
||
|
self.num_positions = self.num_patches + 1
|
||
|
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
||
|
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
|
||
|
|
||
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
||
|
batch_size = pixel_values.shape[0]
|
||
|
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
||
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
||
|
|
||
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
||
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
||
|
embeddings = embeddings + self.position_embedding(self.position_ids)
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
class CLOOBTextEmbeddings(nn.Module):
|
||
|
def __init__(self, config: CLOOBTextConfig):
|
||
|
super().__init__()
|
||
|
embed_dim = config.hidden_size
|
||
|
|
||
|
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
||
|
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
||
|
|
||
|
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
||
|
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
) -> torch.Tensor:
|
||
|
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
||
|
|
||
|
if position_ids is None:
|
||
|
position_ids = self.position_ids[:, :seq_length]
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.token_embedding(input_ids)
|
||
|
|
||
|
position_embeddings = self.position_embedding(position_ids)
|
||
|
embeddings = inputs_embeds + position_embeddings
|
||
|
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
class CLOOBAttention(nn.Module):
|
||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.num_heads = config.num_attention_heads
|
||
|
self.head_dim = self.embed_dim // self.num_heads
|
||
|
if self.head_dim * self.num_heads != self.embed_dim:
|
||
|
raise ValueError(
|
||
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
||
|
f" {self.num_heads})."
|
||
|
)
|
||
|
self.scale = self.head_dim**-0.5
|
||
|
self.dropout = config.attention_dropout
|
||
|
|
||
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
|
||
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
causal_attention_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
|
"""Input shape: Batch x Time x Channel"""
|
||
|
|
||
|
bsz, tgt_len, embed_dim = hidden_states.size()
|
||
|
|
||
|
# get query proj
|
||
|
query_states = self.q_proj(hidden_states) * self.scale
|
||
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||
|
|
||
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
||
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
||
|
key_states = key_states.view(*proj_shape)
|
||
|
value_states = value_states.view(*proj_shape)
|
||
|
|
||
|
src_len = key_states.size(1)
|
||
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
||
|
|
||
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
||
|
raise ValueError(
|
||
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
||
|
f" {attn_weights.size()}"
|
||
|
)
|
||
|
|
||
|
# apply the causal_attention_mask first
|
||
|
if causal_attention_mask is not None:
|
||
|
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||
|
raise ValueError(
|
||
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
||
|
f" {causal_attention_mask.size()}"
|
||
|
)
|
||
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||
|
raise ValueError(
|
||
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
||
|
)
|
||
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
|
||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||
|
|
||
|
if output_attentions:
|
||
|
# this operation is a bit akward, but it's required to
|
||
|
# make sure that attn_weights keeps its gradient.
|
||
|
# In order to do so, attn_weights have to reshaped
|
||
|
# twice and have to be reused in the following
|
||
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
else:
|
||
|
attn_weights_reshaped = None
|
||
|
|
||
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
||
|
|
||
|
attn_output = torch.bmm(attn_probs, value_states)
|
||
|
|
||
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
||
|
raise ValueError(
|
||
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
||
|
f" {attn_output.size()}"
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
||
|
attn_output = attn_output.transpose(1, 2)
|
||
|
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
||
|
|
||
|
attn_output = self.out_proj(attn_output)
|
||
|
|
||
|
return attn_output, attn_weights_reshaped
|
||
|
|
||
|
|
||
|
class CLOOBMLP(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.activation_fn = ACT2FN[config.hidden_act]
|
||
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
||
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.fc1(hidden_states)
|
||
|
hidden_states = self.activation_fn(hidden_states)
|
||
|
hidden_states = self.fc2(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class CLOOBEncoderLayer(nn.Module):
|
||
|
def __init__(self, config: CLOOBConfig):
|
||
|
super().__init__()
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.self_attn = CLOOBAttention(config)
|
||
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim)
|
||
|
self.mlp = CLOOBMLP(config)
|
||
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: torch.Tensor,
|
||
|
causal_attention_mask: torch.Tensor,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.FloatTensor]:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||
|
attention_mask (`torch.FloatTensor`): attention mask of size
|
||
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
||
|
`(config.encoder_attention_heads,)`.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
"""
|
||
|
residual = hidden_states
|
||
|
|
||
|
hidden_states = self.layer_norm1(hidden_states)
|
||
|
hidden_states, attn_weights = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
causal_attention_mask=causal_attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.layer_norm2(hidden_states)
|
||
|
hidden_states = self.mlp(hidden_states)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (attn_weights,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class CLOOBPreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = CLOOBConfig
|
||
|
base_model_prefix = "cloob"
|
||
|
supports_gradient_checkpointing = True
|
||
|
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights"""
|
||
|
factor = self.config.initializer_factor
|
||
|
if isinstance(module, CLOOBTextEmbeddings):
|
||
|
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
||
|
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
||
|
elif isinstance(module, CLOOBVisionEmbeddings):
|
||
|
factor = self.config.initializer_factor
|
||
|
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
|
||
|
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
|
||
|
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
|
||
|
elif isinstance(module, CLOOBAttention):
|
||
|
factor = self.config.initializer_factor
|
||
|
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
||
|
out_proj_std = (module.embed_dim**-0.5) * factor
|
||
|
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
|
||
|
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
|
||
|
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
|
||
|
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
||
|
elif isinstance(module, CLOOBMLP):
|
||
|
factor = self.config.initializer_factor
|
||
|
in_proj_std = (
|
||
|
(module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
||
|
)
|
||
|
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
||
|
nn.init.normal_(module.fc1.weight, std=fc_std)
|
||
|
nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
||
|
elif isinstance(module, CLOOBModel):
|
||
|
nn.init.normal_(
|
||
|
module.text_projection.weight,
|
||
|
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
|
||
|
)
|
||
|
nn.init.normal_(
|
||
|
module.visual_projection.weight,
|
||
|
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
|
||
|
)
|
||
|
|
||
|
if isinstance(module, nn.LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
if isinstance(module, nn.Linear) and module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
|
||
|
def _set_gradient_checkpointing(self, module, value=False):
|
||
|
if isinstance(module, CLOOBEncoder):
|
||
|
module.gradient_checkpointing = value
|
||
|
|
||
|
|
||
|
class CLOOBEncoder(nn.Module):
|
||
|
"""
|
||
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
||
|
[`CLOOBEncoderLayer`].
|
||
|
Args:
|
||
|
config: CLOOBConfig
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: CLOOBConfig):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layers = nn.ModuleList([CLOOBEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
inputs_embeds,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
causal_attention_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
r"""
|
||
|
Args:
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||
|
than the model's internal embedding lookup matrix.
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||
|
for more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
encoder_states = () if output_hidden_states else None
|
||
|
all_attentions = () if output_attentions else None
|
||
|
|
||
|
hidden_states = inputs_embeds
|
||
|
for idx, encoder_layer in enumerate(self.layers):
|
||
|
if output_hidden_states:
|
||
|
encoder_states = encoder_states + (hidden_states,)
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
|
||
|
def create_custom_forward(module):
|
||
|
def custom_forward(*inputs):
|
||
|
return module(*inputs, output_attentions)
|
||
|
|
||
|
return custom_forward
|
||
|
|
||
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||
|
create_custom_forward(encoder_layer),
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
causal_attention_mask,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = encoder_layer(
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
causal_attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_attentions = all_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
encoder_states = encoder_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
||
|
)
|
||
|
|
||
|
|
||
|
class CLOOBTextTransformer(nn.Module):
|
||
|
def __init__(self, config: CLOOBTextConfig):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
embed_dim = config.hidden_size
|
||
|
self.embeddings = CLOOBTextEmbeddings(config)
|
||
|
self.encoder = CLOOBEncoder(config)
|
||
|
self.final_layer_norm = nn.LayerNorm(embed_dim)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if input_ids is None:
|
||
|
raise ValueError("You have to specify either input_ids")
|
||
|
|
||
|
input_shape = input_ids.size()
|
||
|
input_ids = input_ids.view(-1, input_shape[-1])
|
||
|
|
||
|
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
||
|
|
||
|
bsz, seq_len = input_shape
|
||
|
# CLOOB's text model uses causal mask, prepare it here.
|
||
|
# https://github.com/openai/CLOOB/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/CLOOB/model.py#L324
|
||
|
causal_attention_mask = self._build_causal_attention_mask(bsz, seq_len).to(hidden_states.device)
|
||
|
# expand attention_mask
|
||
|
if attention_mask is not None:
|
||
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||
|
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
inputs_embeds=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
causal_attention_mask=causal_attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
last_hidden_state = encoder_outputs[0]
|
||
|
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
||
|
|
||
|
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
|
||
|
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
||
|
pooled_output = last_hidden_state[torch.arange(last_hidden_state.shape[0]), input_ids.argmax(dim=-1)]
|
||
|
|
||
|
if not return_dict:
|
||
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutputWithPooling(
|
||
|
last_hidden_state=last_hidden_state,
|
||
|
pooler_output=pooled_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
def _build_causal_attention_mask(self, bsz, seq_len):
|
||
|
# lazily create causal attention mask, with full attention between the vision tokens
|
||
|
# pytorch uses additive attention mask; fill with -inf
|
||
|
mask = torch.empty(bsz, seq_len, seq_len)
|
||
|
mask.fill_(float("-inf"))
|
||
|
mask.triu_(1) # zero out the lower diagonal
|
||
|
mask = mask.unsqueeze(1) # expand mask
|
||
|
return mask
|
||
|
|
||
|
|
||
|
class CLOOBTextModel(CLOOBPreTrainedModel):
|
||
|
config_class = CLOOBTextConfig
|
||
|
|
||
|
def __init__(self, config: CLOOBTextConfig):
|
||
|
super().__init__(config)
|
||
|
self.text_model = CLOOBTextTransformer(config)
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> nn.Module:
|
||
|
return self.text_model.embeddings.token_embedding
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.text_model.embeddings.token_embedding = value
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||
|
return self.text_model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
|
||
|
class CLOOBVisionTransformer(nn.Module):
|
||
|
def __init__(self, config: CLOOBVisionConfig):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
embed_dim = config.hidden_size
|
||
|
|
||
|
self.embeddings = CLOOBVisionEmbeddings(config)
|
||
|
self.pre_layrnorm = nn.LayerNorm(embed_dim)
|
||
|
self.encoder = CLOOBEncoder(config)
|
||
|
self.post_layernorm = nn.LayerNorm(embed_dim)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if pixel_values is None:
|
||
|
raise ValueError("You have to specify pixel_values")
|
||
|
|
||
|
hidden_states = self.embeddings(pixel_values)
|
||
|
hidden_states = self.pre_layrnorm(hidden_states)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
inputs_embeds=hidden_states,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
last_hidden_state = encoder_outputs[0]
|
||
|
pooled_output = last_hidden_state[:, 0, :]
|
||
|
pooled_output = self.post_layernorm(pooled_output)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutputWithPooling(
|
||
|
last_hidden_state=last_hidden_state,
|
||
|
pooler_output=pooled_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
class CLOOBVisionModel(CLOOBPreTrainedModel):
|
||
|
config_class = CLOOBVisionConfig
|
||
|
main_input_name = "pixel_values"
|
||
|
|
||
|
def __init__(self, config: CLOOBVisionConfig):
|
||
|
super().__init__(config)
|
||
|
self.vision_model = CLOOBVisionTransformer(config)
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> nn.Module:
|
||
|
return self.vision_model.embeddings.patch_embedding
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||
|
return self.vision_model(
|
||
|
pixel_values=pixel_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
|
||
|
class CLOOBModel(CLOOBPreTrainedModel):
|
||
|
config_class = CLOOBConfig
|
||
|
|
||
|
def __init__(self, config: CLOOBConfig):
|
||
|
super().__init__(config)
|
||
|
text_config = config.text_config
|
||
|
vision_config = config.vision_config
|
||
|
|
||
|
self.projection_dim = config.projection_dim
|
||
|
self.text_embed_dim = text_config.hidden_size
|
||
|
self.vision_embed_dim = vision_config.hidden_size
|
||
|
|
||
|
if isinstance(text_config, CLOOBTextConfig):
|
||
|
text_model = CLOOBTextTransformer(text_config)
|
||
|
else:
|
||
|
text_model = AutoModel.from_config(config.text_config, add_pooling_layer=False)
|
||
|
|
||
|
if isinstance(config.vision_config, CLOOBVisionConfig):
|
||
|
vision_model = CLOOBVisionModel(config.vision_config)
|
||
|
else:
|
||
|
vision_model = AutoModel.from_config(config.vision_config, add_pooling_layer=False)
|
||
|
|
||
|
self.text_model = text_model
|
||
|
self.vision_model = vision_model
|
||
|
|
||
|
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
|
||
|
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
|
||
|
|
||
|
self.inv_tau = config.init_inv_tau
|
||
|
self.scale_hopfield = config.scale_hopfield
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def encode_text(self, input_ids, **kwargs):
|
||
|
return self.get_text_features(input_ids=input_ids, **kwargs)
|
||
|
|
||
|
def get_text_features(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> torch.FloatTensor:
|
||
|
# Use CLOOB model's config for some fields (if specified) instead of those of vision & text components.
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
text_outputs = self.text_model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
pooled_output = text_outputs.last_hidden_state[:, 0, :]
|
||
|
text_features = self.text_projection(pooled_output)
|
||
|
|
||
|
return text_features
|
||
|
|
||
|
def encode_image(self, pixel_values, **kwargs):
|
||
|
return self.get_image_features(pixel_values=pixel_values, **kwargs)
|
||
|
|
||
|
def get_image_features(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> torch.FloatTensor:
|
||
|
# Use CLOOB model's config for some fields (if specified) instead of those of vision & text components.
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
vision_outputs = self.vision_model(
|
||
|
pixel_values=pixel_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
pooled_output = vision_outputs.last_hidden_state[:, 0, :]
|
||
|
image_features = self.visual_projection(pooled_output)
|
||
|
|
||
|
return image_features
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
return_loss: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, CLOOBOutput]:
|
||
|
# Use CLOOB model's config for some fields (if specified) instead of those of vision & text components.
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
vision_outputs = self.vision_model(
|
||
|
pixel_values=pixel_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
text_outputs = self.text_model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
image_embeds = vision_outputs.last_hidden_state[:, 0, :]
|
||
|
image_embeds = self.visual_projection(image_embeds)
|
||
|
|
||
|
text_embeds = text_outputs.last_hidden_state[:, 0, :]
|
||
|
text_embeds = self.text_projection(text_embeds)
|
||
|
|
||
|
# normalized features
|
||
|
image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True)
|
||
|
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
|
||
|
|
||
|
loss = None
|
||
|
if return_loss:
|
||
|
loss = cloob_loss(image_embeds, text_embeds, self.inv_tau, self.scale_hopfield)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (text_embeds, image_embeds, self.inv_tau, text_outputs, vision_outputs)
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return CLOOBOutput(
|
||
|
loss=loss,
|
||
|
text_embeds=text_embeds,
|
||
|
image_embeds=image_embeds,
|
||
|
inv_tau=self.inv_tau,
|
||
|
text_model_output=text_outputs,
|
||
|
vision_model_output=vision_outputs,
|
||
|
)
|