|
|
|
# Copyright 2021 Zilliz. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import sys
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from towhee import register
|
|
|
|
from towhee.operator.base import NNOperator, OperatorFlag
|
|
|
|
from towhee.types.arg import arg, to_image_color
|
|
|
|
from towhee.types.image_utils import from_pil, to_pil
|
|
|
|
|
|
|
|
@register(output_schema=['vec'])
|
|
|
|
class Jaclip(NNOperator):
|
|
|
|
"""
|
|
|
|
Japanese CLIP multi-modal embedding operator
|
|
|
|
"""
|
|
|
|
def __init__(self, model_name: str, modality: str):
|
|
|
|
super().__init__()
|
|
|
|
path = str(Path(__file__).parent)
|
|
|
|
sys.path.append(path)
|
|
|
|
import japanese_clip as ja_clip
|
|
|
|
sys.path.pop()
|
|
|
|
cfg = self._configs()[model_name]
|
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
self._modality = modality
|
|
|
|
model, preprocess = ja_clip.load(cfg['weights'], cache_dir="{}/weights/japanese_clip".format(path), device=self.device)
|
|
|
|
self.model = model
|
|
|
|
self.tfms = preprocess
|
|
|
|
self.tokenizer = ja_clip.load_tokenizer()
|
|
|
|
self.ja_clip = ja_clip
|
|
|
|
|
|
|
|
|
|
|
|
def __call__(self, data):
|
|
|
|
if self._modality == 'image':
|
|
|
|
vec = self._inference_from_image(data)
|
|
|
|
elif self._modality == 'text':
|
|
|
|
vec = self._inference_from_text(data)
|
|
|
|
else:
|
|
|
|
raise ValueError("modality[{}] not implemented.".format(self._modality))
|
|
|
|
return vec.detach().cpu().numpy().flatten()
|
|
|
|
|
|
|
|
def _inference_from_text(self, text):
|
|
|
|
encodings = self.ja_clip.tokenize(
|
|
|
|
texts=[text],
|
|
|
|
max_seq_len=77,
|
|
|
|
device=self.device,
|
|
|
|
tokenizer=self.tokenizer, # this is optional. if you don't pass, load tokenizer each time
|
|
|
|
)
|
|
|
|
text_feature = self.model.get_text_features(**encodings)
|
|
|
|
return text_feature
|
|
|
|
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
|
|
def _inference_from_image(self, img):
|
|
|
|
img = self._preprocess(img)
|
|
|
|
caption = ''
|
|
|
|
image_feature = self.model.get_image_features(img)
|
|
|
|
return image_feature
|
|
|
|
|
|
|
|
def _preprocess(self, img):
|
|
|
|
img = to_pil(img)
|
|
|
|
processed_img = self.tfms(img).unsqueeze(0).to(self.device)
|
|
|
|
return processed_img
|
|
|
|
|
|
|
|
def _configs(self):
|
|
|
|
config = {}
|
|
|
|
config['japanese-clip-vit-b-16'] = {}
|
|
|
|
config['japanese-clip-vit-b-16']['weights'] = 'rinna/japanese-clip-vit-b-16'
|
|
|
|
config['japanese-cloob-vit-b-16'] = {}
|
|
|
|
config['japanese-cloob-vit-b-16']['weights'] = 'rinna/japanese-cloob-vit-b-16'
|
|
|
|
return config
|