logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

80 lines
2.8 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from pathlib import Path
import torch
from towhee import register
from towhee.operator.base import NNOperator, OperatorFlag
from towhee.types.arg import arg, to_image_color
from towhee.types.image_utils import from_pil, to_pil
@register(output_schema=['vec'])
class Jaclip(NNOperator):
"""
Japanese CLIP multi-modal embedding operator
"""
def __init__(self, model_name: str, modality: str):
super().__init__()
path = str(Path(__file__).parent)
sys.path.append(path)
import japanese_clip as ja_clip
sys.path.pop()
self.device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = ja_clip.load("rinna/japanese-clip-vit-b-16", cache_dir="{}/weights/japanese_clip".format(path), device=self.device)
self.model = model
self.tfms = preprocess
self.tokenizer = ja_clip.load_tokenizer()
self.ja_clip = ja_clip
def __call__(self, data):
if self._modality == 'image':
vec = self._inference_from_image(data)
elif self._modality == 'text':
vec = self._inference_from_text(data)
else:
raise ValueError("modality[{}] not implemented.".format(self._modality))
return vec.detach().cpu().numpy().flatten()
def _inference_from_text(self, text):
encodings = ja_clip.tokenize(
texts=[text],
max_seq_len=77,
device=self.device,
tokenizer=self.tokenizer, # this is optional. if you don't pass, load tokenizer each time
)
text_feature = model.get_text_features(**encodings)
return text_feature
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):
img = self._preprocess(img)
caption = ''
image_feature = self.model.get_image_features(image)
return image_feature
def _preprocess(self, img):
img = to_pil(img)
processed_img = self.tfms(img).unsqueeze(0).to(self.device)
return processed_img
def _configs(self):
config = {}
config['blip_base'] = {}
config['blip_base']['weights'] = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth'
return config