japanese-clip
copied
wxywb
2 years ago
3 changed files with 112 additions and 4 deletions
@ -1,2 +1,104 @@ |
|||||
# japanese-clip |
|
||||
|
#Japanese Image-Text Retrieval Embdding with CLIP |
||||
|
|
||||
|
*author: David Wang* |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Description |
||||
|
|
||||
|
This operator extracts features for image or text with [Japanese-CLIP](https://github.com/rinnakk/japanese-clip |
||||
|
) developed by [rinna Co., Ltd](https://rinna.co.jp/), which can generate embeddings for Japanese text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
## Code Example |
||||
|
|
||||
|
Load an image from path './teddy.jpg' to generate an image embedding. |
||||
|
|
||||
|
Read the text 'スケートボードに乗っているテディベア。' to generate an text embedding. |
||||
|
|
||||
|
*Write the pipeline in simplified style*: |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob('./teddy.jpg') \ |
||||
|
.image_decode() \ |
||||
|
.image_text_embedding.japanese_clip(model_name='clip_vit_b32', modality='image') \ |
||||
|
.show() |
||||
|
|
||||
|
towhee.dc(["スケートボードに乗っているテディベア。"]) \ |
||||
|
.image_text_embedding.japanese_clip(model_name='clip_vit_b32', modality='text') \ |
||||
|
.show() |
||||
|
``` |
||||
|
<img src="https://towhee.io/image-text-embedding/clip/raw/branch/main/vec1.png" alt="result1" style="height:20px;"/> |
||||
|
<img src="https://towhee.io/image-text-embedding/clip/raw/branch/main/vec2.png" alt="result2" style="height:20px;"/> |
||||
|
|
||||
|
*Write a same pipeline with explicit inputs/outputs name specifications:* |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob['path']('./teddy.jpg') \ |
||||
|
.image_decode['path', 'img']() \ |
||||
|
.image_text_embedding.japanese_clip['img', 'vec'](model_name='clip_vit_b32', modality='image') \ |
||||
|
.select['img', 'vec']() \ |
||||
|
.show() |
||||
|
|
||||
|
towhee.dc['text'](["スケートボードに乗っているテディベア。"]) \ |
||||
|
.image_text_embedding.japanese_clip['text','vec'](model_name='clip_vit_b32', modality='text') \ |
||||
|
.select['text', 'vec']() \ |
||||
|
.show() |
||||
|
``` |
||||
|
<img src="https://towhee.io/image-text-embedding/clip/raw/branch/main/tabular1.png" alt="result1" style="height:60px;"/> |
||||
|
<img src="https://towhee.io/image-text-embedding/clip/raw/branch/main/tabular2.png" alt="result2" style="height:60px;"/> |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method |
||||
|
|
||||
|
***japanese_clip(model_name, modality)*** |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***model_name:*** *str* |
||||
|
|
||||
|
The model name of CLIP. Supported model names: |
||||
|
- japanese-clip-vit-b-16 |
||||
|
- japanese-cloob-vit-b-16 |
||||
|
|
||||
|
|
||||
|
***modality:*** *str* |
||||
|
|
||||
|
Which modality(*image* or *text*) is used to generate the embedding. |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. |
||||
|
|
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str* |
||||
|
|
||||
|
The data (image or text based on specified modality) to generate embedding. |
||||
|
|
||||
|
|
||||
|
|
||||
|
**Returns:** *numpy.ndarray* |
||||
|
|
||||
|
The data embedding extracted by model. |
||||
|
|
||||
|
@ -0,0 +1,3 @@ |
|||||
|
torch |
||||
|
towhee |
||||
|
|
Loading…
Reference in new issue