lightningdot
copied
wxywb
2 years ago
9 changed files with 305 additions and 1 deletions
@ -1,2 +1,97 @@ |
|||||
# lightningdot |
|
||||
|
# Image-Text Retrieval Embdding with LightningDOT |
||||
|
|
||||
|
*author: David Wang* |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Description |
||||
|
|
||||
|
This operator extracts features for image or text with [LightningDOT](https://arxiv.org/abs/2103.08784) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
## Code Example |
||||
|
|
||||
|
Load an image from path './teddy.jpg' to generate an image embedding. |
||||
|
|
||||
|
Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding. |
||||
|
|
||||
|
*Write the pipeline in simplified style*: |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob('./teddy.jpg') \ |
||||
|
.image_decode() \ |
||||
|
.image_text_embedding.lightningdot(modality='image') \ |
||||
|
.show() |
||||
|
|
||||
|
towhee.dc(["A teddybear on a skateboard in Times Square."]) \ |
||||
|
.image_text_embedding.lightningdot(modality='text') \ |
||||
|
.show() |
||||
|
``` |
||||
|
<img src="https://towhee.io/towhee/lightningdot/raw/branch/main/vec1.png" alt="result1" style="height:20px;"/> |
||||
|
<img src="https://towhee.io/towhee/lightningdot/raw/branch/main/vec2.png" alt="result2" style="height:20px;"/> |
||||
|
|
||||
|
*Write a same pipeline with explicit inputs/outputs name specifications:* |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob['path']('./teddy.jpg') \ |
||||
|
.image_decode['path', 'img']() \ |
||||
|
.image_text_embedding.lightningdot['img', 'vec'](modality='image') \ |
||||
|
.select['img', 'vec']() \ |
||||
|
.show() |
||||
|
|
||||
|
towhee.dc['text'](["A teddybear on a skateboard in Times Square."]) \ |
||||
|
.image_text_embedding.lightningdot['text','vec'](modality='text') \ |
||||
|
.select['text', 'vec']() \ |
||||
|
.show() |
||||
|
``` |
||||
|
<img src="https://towhee.io/image-text-embedding/lightningdot/raw/branch/main/tabular1.png" alt="result1" style="height:60px;"/> |
||||
|
<img src="https://towhee.io/image-text-embedding/lightningdot/raw/branch/main/tabular2.png" alt="result2" style="height:60px;"/> |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method |
||||
|
|
||||
|
***lightningdot(modality)*** |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
​ ***modality:*** *str* |
||||
|
|
||||
|
​ Which modality(*image* or *text*) is used to generate the embedding. |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. |
||||
|
|
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
​ ***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str* |
||||
|
|
||||
|
​ The data (image or text based on specified modality) to generate embedding. |
||||
|
|
||||
|
|
||||
|
|
||||
|
**Returns:** *numpy.ndarray* |
||||
|
|
||||
|
​ The data embedding extracted by model. |
||||
|
|
||||
|
@ -0,0 +1,18 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
from .lightningdot import LightningDOT |
||||
|
|
||||
|
def lightningdot(modality: str): |
||||
|
return LightningDOT(modality) |
@ -0,0 +1,146 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
import sys |
||||
|
import os |
||||
|
import json |
||||
|
import torch |
||||
|
from pathlib import Path |
||||
|
|
||||
|
import numpy as np |
||||
|
from transformers.tokenization_bert import BertTokenizer |
||||
|
|
||||
|
from towhee.types.image_utils import to_pil |
||||
|
from towhee.operator.base import NNOperator, OperatorFlag |
||||
|
from towhee.types.arg import arg, to_image_color |
||||
|
from towhee import register |
||||
|
|
||||
|
from .utils import Configs, get_gather_index |
||||
|
|
||||
|
|
||||
|
def arg_process(args): |
||||
|
dirname = os.path.dirname(__file__) |
||||
|
args.img_checkpoint = dirname + '/' + args.img_checkpoint |
||||
|
args.img_model_config = dirname + '/' + args.img_model_config |
||||
|
return args |
||||
|
|
||||
|
@register(output_schema=['vec']) |
||||
|
class LightningDOT(NNOperator): |
||||
|
""" |
||||
|
CLIP multi-modal embedding operator |
||||
|
""" |
||||
|
def __init__(self, modality: str): |
||||
|
sys.path.append(str(Path(__file__).parent)) |
||||
|
from dvl.models.bi_encoder import BiEncoder |
||||
|
from detector.faster_rcnn import Net, process_img |
||||
|
|
||||
|
full_path = os.path.dirname(__file__) + '/config/flickr30k_ft_config.json' |
||||
|
with open(full_path) as fw: |
||||
|
content = fw.read() |
||||
|
args = json.loads(content) |
||||
|
args = Configs(args) |
||||
|
args = arg_process(args) |
||||
|
self.bi_encoder = BiEncoder(args, True, True, project_dim=args.project_dim) |
||||
|
self.tokenizer = BertTokenizer.from_pretrained('bert-base-cased') |
||||
|
img_model, txt_model = self.bi_encoder.img_model, self.bi_encoder.txt_model |
||||
|
img_model.eval() |
||||
|
txt_model.eval() |
||||
|
self.faster_rcnn_preprocess = process_img |
||||
|
self.faster_rcnn = Net() |
||||
|
self.faster_rcnn.load_state_dict(torch.load(os.path.dirname(__file__) + '/data/model/resnet101_faster_rcnn_final.pth')) |
||||
|
self.faster_rcnn.eval() |
||||
|
self.modality = modality |
||||
|
|
||||
|
def img_detfeat_extract(self, img): |
||||
|
orig_im_scale = [img.shape[1], img.shape[0]] |
||||
|
img, im_scale = self.faster_rcnn_preprocess(img) |
||||
|
img = np.expand_dims(img.transpose((2,0,1)), 0) |
||||
|
img = torch.FloatTensor(img) |
||||
|
bboxes, feat, confidence = self.faster_rcnn(img, im_scale) |
||||
|
bboxes = self.bbox_feat_process(bboxes, orig_im_scale) |
||||
|
img_bb = torch.cat([bboxes, bboxes[:, 4:5]*bboxes[:, 5:]], dim=-1) |
||||
|
return img_bb, feat, confidence |
||||
|
|
||||
|
def bbox_feat_process(self, bboxes, im_scale): |
||||
|
image_w, image_h = im_scale |
||||
|
box_width = bboxes[:, 2] - bboxes[:, 0] |
||||
|
box_height = bboxes[:, 3] - bboxes[:, 1] |
||||
|
scaled_width = box_width / image_w |
||||
|
scaled_height = box_height / image_h |
||||
|
scaled_x = bboxes[:, 0] / image_w |
||||
|
scaled_y = bboxes[:, 1] / image_h |
||||
|
|
||||
|
box_width = box_width.unsqueeze(1) |
||||
|
box_height = box_height.unsqueeze(1) |
||||
|
scaled_width = scaled_width.unsqueeze(1) |
||||
|
scaled_height = scaled_height.unsqueeze(1) |
||||
|
scaled_x = scaled_x.unsqueeze(1) |
||||
|
scaled_y = scaled_y .unsqueeze(1) |
||||
|
|
||||
|
normalized_bbox = torch.hstack((scaled_x, scaled_y, |
||||
|
scaled_x + scaled_width, |
||||
|
scaled_y + scaled_height, |
||||
|
scaled_width, scaled_height)) |
||||
|
|
||||
|
return normalized_bbox |
||||
|
|
||||
|
def get_img_feat(self, data): |
||||
|
img_pos_feat, img_feat, _ = self.img_detfeat_extract(data) |
||||
|
num_bb = img_pos_feat.shape[1] |
||||
|
|
||||
|
img_input_ids = torch.Tensor([101]).long() |
||||
|
|
||||
|
return img_feat, img_pos_feat, img_input_ids |
||||
|
|
||||
|
def __call__(self, data): |
||||
|
if self.modality == 'image': |
||||
|
vec = self._inference_from_image(data) |
||||
|
elif self.modality == 'text': |
||||
|
vec = self._inference_from_text(data) |
||||
|
else: |
||||
|
raise ValueError("modality[{}] not implemented.".format(self._modality)) |
||||
|
return vec.detach().cpu().numpy() |
||||
|
|
||||
|
def _inference_from_text(self, data): |
||||
|
ids = self.tokenizer.encode(data) |
||||
|
ids = torch.LongTensor(ids).unsqueeze(0) |
||||
|
attn_mask = torch.ones(len(ids), dtype=torch.long).unsqueeze(0) |
||||
|
pos_ids = torch.arange(len(ids), dtype=torch.long).unsqueeze(0) |
||||
|
_, query_vector, _ = self.bi_encoder.txt_model(ids, None, attn_mask, pos_ids) |
||||
|
return query_vector |
||||
|
|
||||
|
def _inference_from_image(self, data): |
||||
|
img_pos_feat, img_feat, _ = self.img_detfeat_extract(data) |
||||
|
num_bb = img_pos_feat.shape[0] |
||||
|
|
||||
|
attn_masks_img = torch.ones(num_bb+1, dtype=torch.long) |
||||
|
bs = 1 |
||||
|
num_bbs = [num_bb] |
||||
|
out_size = attn_masks_img.size(0) |
||||
|
gather_index = get_gather_index([1]*bs, num_bbs, bs, 1, out_size) |
||||
|
img_feat, img_pos_feat, img_input_ids = self.get_img_feat(data) |
||||
|
fix_txt_encoder = False |
||||
|
|
||||
|
position_ids = torch.arange(0, img_input_ids.size(0), dtype=torch.long).unsqueeze(0) |
||||
|
img_input_ids = img_input_ids.unsqueeze(0) |
||||
|
attn_masks_img = attn_masks_img.unsqueeze(0) |
||||
|
img_feat = img_feat.unsqueeze(0) |
||||
|
img_pos_feat = img_pos_feat.unsqueeze(0) |
||||
|
|
||||
|
img_seq, img_pooled, img_hidden = self.bi_encoder.get_representation(self.bi_encoder.img_model, img_input_ids, |
||||
|
attn_masks_img, position_ids, |
||||
|
img_feat, img_pos_feat, |
||||
|
None, |
||||
|
gather_index, fix_txt_encoder) |
||||
|
|
||||
|
return img_pooled |
@ -0,0 +1,4 @@ |
|||||
|
torch>=1.9.0 |
||||
|
torchvision>=0.10.0 |
||||
|
transformers==2.3.0 |
||||
|
Pillow |
After Width: | Height: | Size: 22 KiB |
After Width: | Height: | Size: 176 KiB |
@ -0,0 +1,41 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
import torch |
||||
|
from types import SimpleNamespace |
||||
|
|
||||
|
class Configs(SimpleNamespace): |
||||
|
|
||||
|
def __init__(self, dictionary, **kwargs): |
||||
|
super().__init__(**kwargs) |
||||
|
for key, value in dictionary.items(): |
||||
|
if isinstance(value, dict): |
||||
|
self.__setattr__(key, Configs(value)) |
||||
|
else: |
||||
|
self.__setattr__(key, value) |
||||
|
|
||||
|
def __getattribute__(self, value): |
||||
|
try: |
||||
|
return super().__getattribute__(value) |
||||
|
except AttributeError: |
||||
|
return None |
||||
|
|
||||
|
def get_gather_index(txt_lens, num_bbs, batch_size, max_len, out_size): |
||||
|
# assert len(txt_lens) == len(num_bbs) == batch_size |
||||
|
gather_index = torch.arange(0, out_size, dtype=torch.long, |
||||
|
).unsqueeze(0).repeat(len(num_bbs), 1) |
||||
|
|
||||
|
# for i, (tl, nbb) in enumerate(zip(txt_lens, num_bbs)): |
||||
|
# gather_index.data[i, tl:tl+nbb] = torch.arange(max_len, max_len+nbb, |
||||
|
# dtype=torch.long).data |
||||
|
return gather_index |
After Width: | Height: | Size: 13 KiB |
After Width: | Height: | Size: 14 KiB |
Loading…
Reference in new issue