logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

101 lines
2.4 KiB

# Russian Image-Text Retrieval Embdding with CLIP
*author: David Wang*
<br />
## Description
This operator extracts features for image or text with [CLIP](https://arxiv.org/abs/2103.00020) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This is a Russian version of CLIP adopted from [ai-forever/ru-clip](https://github.com/ai-forever/ru-clip).
<br />
## Code Example
Load an image from path './teddy.jpg' to generate an image embedding.
Read the text 'Плюшевый мишка на скейтборде на Таймс-сквер.' to generate an text embedding.
*Write a pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
from towhee.dc2 import pipe, ops, DataCollection
img_pipe = (
pipe.input('url')
.map('url', 'img', ops.image_decode.cv2_rgb())
.map('img', 'vec', ops.image_text_embedding.ru_clip(model_name='ruclip-vit-base-patch32-224', modality='image'))
.output('img', 'vec')
)
text_pipe = (
pipe.input('text')
.map('text', 'vec', ops.image_text_embedding.ru_clip(model_name='ruclip-vit-base-patch32-224', modality='text'))
.output('text', 'vec')
)
DataCollection(img_pipe('./teddy.jpg')).show()
DataCollection(text_pipe('Плюшевый мишка на скейтборде на Таймс-сквер.')).show()
```
<img src="./tabular1.png" alt="result1" style="height:60px;"/>
<img src="./tabular2.png" alt="result2" style="height:60px;"/>
<br />
## Factory Constructor
Create the operator via the following factory method
***ru_clip(model_name, modality)***
**Parameters:**
***model_name:*** *str*
​ The model name of CLIP. Supported model names:
- ruclip-vit-base-patch32-224
- ruclip-vit-base-patch16-224
- ruclip-vit-large-patch14-224
- ruclip-vit-large-patch14-336
- ruclip-vit-base-patch32-384
- ruclip-vit-base-patch16-384
***modality:*** *str*
​ Which modality(*image* or *text*) is used to generate the embedding.
<br />
## Interface
An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray.
**Parameters:**
***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str*
​ The data (image or text based on specified modality) to generate embedding.
**Returns:** *numpy.ndarray*
​ The data embedding extracted by model.
2 years ago