ru-clip
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
239 lines
8.4 KiB
239 lines
8.4 KiB
# -*- coding: utf-8 -*-
|
|
import os
|
|
import json
|
|
from collections import OrderedDict
|
|
|
|
import torch
|
|
import numpy as np
|
|
from torch import nn
|
|
|
|
|
|
class LayerNorm(nn.LayerNorm):
|
|
"""Subclass torch's LayerNorm to handle fp16."""
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
orig_type = x.dtype
|
|
ret = super().forward(x.type(torch.float32))
|
|
return ret.type(orig_type)
|
|
|
|
|
|
class QuickGELU(nn.Module):
|
|
def forward(self, x: torch.Tensor):
|
|
return x * torch.sigmoid(1.702 * x)
|
|
|
|
|
|
class ResidualAttentionBlock(nn.Module):
|
|
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
|
super().__init__()
|
|
|
|
self.attn = nn.MultiheadAttention(d_model, n_head)
|
|
self.ln_1 = LayerNorm(d_model)
|
|
self.mlp = nn.Sequential(OrderedDict([
|
|
('c_fc', nn.Linear(d_model, d_model * 4)),
|
|
('gelu', QuickGELU()),
|
|
('c_proj', nn.Linear(d_model * 4, d_model))
|
|
]))
|
|
self.ln_2 = LayerNorm(d_model)
|
|
self.attn_mask = attn_mask
|
|
|
|
def attention(self, x: torch.Tensor):
|
|
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
|
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x = x + self.attention(self.ln_1(x))
|
|
x = x + self.mlp(self.ln_2(x))
|
|
return x
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
|
super().__init__()
|
|
self.width = width
|
|
self.layers = layers
|
|
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
return self.resblocks(x)
|
|
|
|
|
|
class VisionTransformer(nn.Module):
|
|
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
|
super().__init__()
|
|
self.input_resolution = input_resolution
|
|
self.output_dim = output_dim
|
|
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
|
|
|
scale = width ** -0.5
|
|
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
|
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
|
self.ln_pre = LayerNorm(width)
|
|
|
|
self.transformer = Transformer(width, layers, heads)
|
|
|
|
self.ln_post = LayerNorm(width)
|
|
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x = self.conv1(x) # shape = [*, width, grid, grid]
|
|
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
|
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
|
x = torch.cat([
|
|
self.class_embedding.to(x.dtype) +
|
|
torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x
|
|
], dim=1) # shape = [*, grid ** 2 + 1, width]
|
|
x = x + self.positional_embedding.to(x.dtype)
|
|
x = self.ln_pre(x)
|
|
|
|
x = x.permute(1, 0, 2) # NLD -> LND
|
|
x = self.transformer(x)
|
|
x = x.permute(1, 0, 2) # LND -> NLD
|
|
|
|
x = self.ln_post(x[:, 0, :])
|
|
|
|
if self.proj is not None:
|
|
x = x @ self.proj
|
|
|
|
return x
|
|
|
|
|
|
class CLIP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
embed_dim,
|
|
image_resolution,
|
|
vision_layers,
|
|
vision_width,
|
|
vision_patch_size,
|
|
context_length,
|
|
vocab_size,
|
|
transformer_width,
|
|
transformer_heads,
|
|
transformer_layers,
|
|
eos_id=3,
|
|
):
|
|
super().__init__()
|
|
|
|
self.eos_id = eos_id
|
|
self.context_length = context_length
|
|
|
|
vision_heads = vision_width // 64
|
|
self.visual = VisionTransformer(
|
|
input_resolution=image_resolution,
|
|
patch_size=vision_patch_size,
|
|
width=vision_width,
|
|
layers=vision_layers,
|
|
heads=vision_heads,
|
|
output_dim=embed_dim,
|
|
)
|
|
|
|
self.transformer = Transformer(
|
|
width=transformer_width,
|
|
layers=transformer_layers,
|
|
heads=transformer_heads,
|
|
attn_mask=self.build_attention_mask(),
|
|
)
|
|
|
|
self.vocab_size = vocab_size
|
|
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
|
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
|
self.ln_final = LayerNorm(transformer_width)
|
|
|
|
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
|
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
|
|
|
self.initialize_parameters()
|
|
|
|
def initialize_parameters(self):
|
|
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
|
nn.init.normal_(self.positional_embedding, std=0.01)
|
|
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
|
attn_std = self.transformer.width ** -0.5
|
|
fc_std = (2 * self.transformer.width) ** -0.5
|
|
for block in self.transformer.resblocks:
|
|
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
|
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
|
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
|
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
|
|
|
if self.text_projection is not None:
|
|
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
|
|
|
def build_attention_mask(self):
|
|
mask = torch.empty(self.context_length, self.context_length)
|
|
mask.fill_(float('-inf'))
|
|
mask.triu_(1)
|
|
return mask
|
|
|
|
@property
|
|
def dtype(self):
|
|
return self.visual.conv1.weight.dtype
|
|
|
|
def encode_image(self, pixel_values):
|
|
"""Encode images
|
|
Parameters
|
|
----------
|
|
pixel_values: torch.Tensor
|
|
Processed images from RuCLIPProcessor class
|
|
Returns
|
|
-------
|
|
image_latents : torch.Tensor
|
|
Image embeddings
|
|
"""
|
|
return self.visual(pixel_values.type(self.dtype))
|
|
|
|
def encode_text(self, input_ids):
|
|
"""Encode texts
|
|
Parameters
|
|
----------
|
|
input_ids: torch.Tensor
|
|
Tokenized texts from RuCLIPProcessor class
|
|
Returns
|
|
-------
|
|
text_latents : torch.Tensor
|
|
Text embeddings
|
|
"""
|
|
x = self.token_embedding(input_ids).type(self.dtype) # [batch_size, n_ctx, d_model]
|
|
x = x + self.positional_embedding.type(self.dtype)
|
|
x = x.permute(1, 0, 2) # NLD -> LND
|
|
x = self.transformer(x)
|
|
x = x.permute(1, 0, 2) # LND -> NLD
|
|
x = self.ln_final(x).type(self.dtype)
|
|
# x.shape = [batch_size, n_ctx, transformer.width]
|
|
x = x[torch.arange(x.shape[0]), torch.where(input_ids == self.eos_id)[1]] @ self.text_projection
|
|
return x
|
|
|
|
def forward(self, input_ids, pixel_values):
|
|
image_features = self.encode_image(pixel_values)
|
|
text_features = self.encode_text(input_ids)
|
|
|
|
# normalize features
|
|
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
|
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
|
|
|
# cosine similarity as logits
|
|
logit_scale = self.logit_scale.exp()
|
|
logits_per_image = logit_scale * image_features @ text_features.t()
|
|
logits_per_text = logits_per_image.t()
|
|
|
|
return logits_per_image, logits_per_text
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, folder):
|
|
"""Load model from folder"""
|
|
config = json.load(open(os.path.join(folder, 'config.json')))
|
|
model = cls(
|
|
embed_dim=config['embed_dim'],
|
|
image_resolution=config['image_resolution'],
|
|
vision_layers=config['vision_layers'],
|
|
vision_width=config['vision_width'],
|
|
vision_patch_size=config['vision_patch_size'],
|
|
context_length=config['context_length'],
|
|
vocab_size=config['vocab_size'],
|
|
transformer_width=config['transformer_width'],
|
|
transformer_heads=config['transformer_heads'],
|
|
transformer_layers=config['transformer_layers'],
|
|
)
|
|
checkpoint = torch.load(os.path.join(folder, 'pytorch_model.bin'), map_location='cpu')
|
|
model.load_state_dict(checkpoint)
|
|
return model
|