logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

77 lines
2.8 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from pathlib import Path
import torch
from torchvision import transforms
from towhee.types.image_utils import to_pil
from towhee.operator.base import NNOperator, OperatorFlag
from towhee.types.arg import arg, to_image_color
from towhee import register
@register(output_schema=['vec'])
class RuClip(NNOperator):
"""
Russian CLIP multi-modal embedding operator
"""
def __init__(self, model_name: str, modality: str):
self.modality = modality
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = clip.create_model(model_name=model_name, pretrained=True, jit=True)
self.tokenize = clip.tokenize
self.device = "cuda" if torch.cuda.is_available() else "cpu"
path = str(Path(__file__).parent)
sys.path.append(path)
import ruclip
sys.path.pop()
clip, processor = ruclip.load('ruclip-vit-base-patch32-384', device=self.device)
templates = ['{}', 'это {}', 'на картинке {}', 'это {}, домашнее животное']
self.predictor = ruclip.Predictor(clip, processor, device, bs=1, templates=templates)
def inference_single_data(self, data):
if self.modality == 'image':
vec = self._inference_from_image(data)
elif self.modality == 'text':
vec = self._inference_from_text(data)
else:
raise ValueError("modality[{}] not implemented.".format(self._modality))
return vec.detach().cpu().numpy().flatten()
def __call__(self, data):
if not isinstance(data, list):
data = [data]
else:
data = data
results = []
for single_data in data:
result = self.inference_single_data(single_data)
results.append(result)
if len(data) == 1:
return results[0]
else:
return results
def _inference_from_text(self, text):
text_features = self.predictor.get_text_latents([text])
return text_features
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):
img = to_pil(img)
image_features = self.predictor.get_image_latents([img])
return image_features