logo
Browse Source

init the operator.

Signed-off-by: wxywb <xy.wang@zilliz.com>
main
wxywb 2 years ago
parent
commit
353c3b95ab
  1. 19
      __init__.py
  2. 331
      models.py
  3. 4
      requirements.txt
  4. 93
      slip.py
  5. 157
      tokenizer.py
  6. 8
      utils.py

19
__init__.py

@ -0,0 +1,19 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .blip import Blip
def blip(model_name: str, modality: str):
return Blip(model_name, modality)

331
models.py

@ -0,0 +1,331 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Modified from github.com/openai/CLIP
from collections import OrderedDict
import numpy as np
import timm
import torch
from torch import nn
import losses
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
def forward(self, x: torch.Tensor):
return self.resblocks(x)
class CLIP(nn.Module):
def __init__(self,
embed_dim: int,
# vision
vision_width: int,
vision_model: nn.Module,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
**kwargs,
):
super().__init__()
self.context_length = context_length
self.vision_width = vision_width
self.visual = vision_model
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask(),
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.image_projection = nn.Parameter(torch.empty(vision_width, embed_dim))
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
nn.init.normal_(self.image_projection, std=self.vision_width ** -0.5)
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def encode_image(self, image):
x = self.visual(image)
x = x @ self.image_projection
return x
def encode_text(self, text):
x = self.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
def forward(self, image, text):
image_embed = self.encode_image(image)
text_embed = self.encode_text(text)
return {'image_embed': image_embed,
'text_embed': text_embed,
'logit_scale': self.logit_scale.exp()}
class SIMCLR(nn.Module):
def __init__(self,
# vision
vision_width: int,
vision_model: nn.Module,
# ssl
ssl_mlp_dim: int,
ssl_emb_dim: int,
**kwargs,
):
super().__init__()
self.vision_width = vision_width
self.visual = vision_model
self.image_mlp = self._build_mlp(in_dim=vision_width, mlp_dim=ssl_mlp_dim, out_dim=ssl_emb_dim)
def _build_mlp(self, in_dim, mlp_dim, out_dim):
return nn.Sequential(OrderedDict([
("layer1", nn.Linear(in_dim, mlp_dim)),
("bn1", nn.SyncBatchNorm(mlp_dim)),
("relu1", nn.ReLU(inplace=True)),
("layer2", nn.Linear(mlp_dim, mlp_dim)),
("bn2", nn.SyncBatchNorm(mlp_dim)),
("relu2", nn.ReLU(inplace=True)),
("layer3", nn.Linear(mlp_dim, out_dim)),
]))
def encode_image(self, image):
x = self.visual(image)
return x
def forward(self, aug1, aug2):
h1 = self.visual(aug1)
h2 = self.visual(aug2)
aug1_embed = self.image_mlp(h1)
aug2_embed = self.image_mlp(h2)
return {'aug1_embed': aug1_embed,
'aug2_embed': aug2_embed}
class SLIP(CLIP):
def __init__(self,
ssl_mlp_dim: int,
ssl_emb_dim: int,
**kwargs,
):
super().__init__(**kwargs)
self.image_mlp = self._build_mlp(in_dim=self.vision_width, mlp_dim=ssl_mlp_dim, out_dim=ssl_emb_dim)
def _build_mlp(self, in_dim, mlp_dim, out_dim):
return nn.Sequential(OrderedDict([
("layer1", nn.Linear(in_dim, mlp_dim)),
("bn1", nn.SyncBatchNorm(mlp_dim)),
("relu1", nn.ReLU(inplace=True)),
("layer2", nn.Linear(mlp_dim, mlp_dim)),
("bn2", nn.SyncBatchNorm(mlp_dim)),
("relu2", nn.ReLU(inplace=True)),
("layer3", nn.Linear(mlp_dim, out_dim)),
]))
def forward(self, image, text, aug1, aug2):
aug1_embed = self.image_mlp(self.visual(aug1))
aug2_embed = self.image_mlp(self.visual(aug2))
image_embed = self.encode_image(image)
text_embed = self.encode_text(text)
return {'image_embed': image_embed,
'text_embed': text_embed,
'logit_scale': self.logit_scale.exp(),
'aug1_embed': aug1_embed,
'aug2_embed': aug2_embed}
def get_loss(model, ssl_temp, ssl_scale):
if model.startswith('SLIP'):
ssl_loss = losses.SIMCLRLoss(temperature=ssl_temp)
return losses.SLIPLoss(ssl_loss, ssl_scale)
if model.startswith('CLIP'):
return losses.CLIPLoss()
if model.startswith('SIMCLR'):
return losses.SIMCLRLoss(temperature=ssl_temp)
def get_metric_names(model):
if model.startswith('SLIP'):
return ['loss', 'clip_loss', 'ssl_loss', 'clip_acc', 'ssl_acc']
elif model.startswith('CLIP'):
return ['loss', 'clip_loss', 'clip_acc']
else:
return ['loss', 'ssl_loss', 'ssl_acc']
@timm.models.registry.register_model
def vit_small_mocov3_patch16_224(**kwargs):
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=12, **kwargs)
model = timm.models.vision_transformer._create_vision_transformer('vit_small_patch16_224', **model_kwargs)
return model
def CLIP_VITS16(**kwargs):
vision_model = timm.create_model('vit_small_mocov3_patch16_224', num_classes=0)
model = CLIP(embed_dim=512, vision_width=384, vision_model=vision_model, context_length=77, vocab_size=49408,
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs)
return model
def SIMCLR_VITS16(**kwargs):
vision_model = timm.create_model('vit_small_mocov3_patch16_224', num_classes=0)
model = SIMCLR(vision_width=384, vision_model=vision_model, **kwargs)
return model
def SLIP_VITS16(**kwargs):
vision_model = timm.create_model('vit_small_mocov3_patch16_224', num_classes=0)
model = SLIP(embed_dim=512, vision_width=384, vision_model=vision_model, context_length=77, vocab_size=49408,
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs)
return model
def CLIP_VITB16(**kwargs):
vision_model = timm.create_model('vit_base_patch16_224', num_classes=0)
model = CLIP(embed_dim=512, vision_width=768, vision_model=vision_model, context_length=77, vocab_size=49408,
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs)
return model
def SIMCLR_VITB16(**kwargs):
vision_model = timm.create_model('vit_base_patch16_224', num_classes=0)
model = SIMCLR(vision_width=768, vision_model=vision_model, **kwargs)
return model
def SLIP_VITB16(**kwargs):
vision_model = timm.create_model('vit_base_patch16_224', num_classes=0)
model = SLIP(embed_dim=512, vision_width=768, vision_model=vision_model, context_length=77, vocab_size=49408,
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs)
return model
def CLIP_VITL16(**kwargs):
vision_model = timm.create_model('vit_large_patch16_224', num_classes=0)
model = CLIP(embed_dim=512, vision_width=1024, vision_model=vision_model, context_length=77, vocab_size=49408,
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs)
return model
def SIMCLR_VITL16(**kwargs):
vision_model = timm.create_model('vit_large_patch16_224', num_classes=0)
model = SIMCLR(vision_width=1024, vision_model=vision_model, **kwargs)
return model
def SLIP_VITL16(**kwargs):
vision_model = timm.create_model('vit_large_patch16_224', num_classes=0)
model = SLIP(embed_dim=512, vision_width=1024, vision_model=vision_model, context_length=77, vocab_size=49408,
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs)
return model

4
requirements.txt

@ -0,0 +1,4 @@
torch>=1.9.0
torchvision>=0.10.0
Pillow
towhee.models

93
slip.py

@ -0,0 +1,93 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from pathlib import Path
import torch
from torchvision import transforms
from towhee import register
from towhee.operator.base import NNOperator, OperatorFlag
from towhee.types.arg import arg, to_image_color
from towhee.types.image_utils import from_pil, to_pil
from tokenizer import SimpleTokenizer
def get_model(model):
if isinstance(model, torch.nn.DataParallel) \
or isinstance(model, torch.nn.parallel.DistributedDataParallel):
return model.module
else:
return model
@register(output_schema=['vec'])
class Slip(NNOperator)
"""
SLIP multi-modal embedding operator
"""
def __init__(self, model_name: str, modality: str):
super().__init__()
sys.path.append(str(Path(__file__).parent))
self.tokenizer = SimpleTokenizer()
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
self.model.eval()
self.tfms = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
lambda x: x.convert('RGB'),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
def __call__(self, data):
if self._modality == 'image':
vec = self._inference_from_image(data)
elif self._modality == 'text':
vec = self._inference_from_text(data)
else:
raise ValueError("modality[{}] not implemented.".format(self._modality))
return vec.detach().cpu().numpy().flatten()
def _inference_from_text(self, text):
texts = tokenizer(texts).cuda(non_blocking=True)
texts = texts.view(-1, 77).contiguous()
embedding = get_model(self.model).encode_text(texts)
embedding = embedding / embedding.norm(dim=-1, keepdim=True)
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):
img = self._preprocess(img)
img = img.to(self.device)
embedding = get_model(self.model).encode_image(img)
return embedding
def _preprocess(self, img):
img = to_pil(img)
processed_img = self.tfms(img).unsqueeze(0).to(self.device)
return processed_img
def _configs(self):
config = {}
config['slip_vit_small'] = {}
config['slip_vit_small']['weights'] = 'https://dl.fbaipublicfiles.com/slip/slip_small_100ep.pt'
config['slip_vit_base'] = {}
config['slip_vit_base']['weights'] = 'https://dl.fbaipublicfiles.com/slip/slip_base_100ep.pt'
config['slip_vit_large'] = {}
config['slip_vit_large']['weights'] = 'https://dl.fbaipublicfiles.com/slip/slip_large_100ep.pt'
return config

157
tokenizer.py

@ -0,0 +1,157 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Modified from github.com/openai/CLIP
import gzip
import html
import os
from functools import lru_cache
import ftfy
import regex as re
import torch
@lru_cache()
def default_bpe():
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def whitespace_clean(text):
text = re.sub(r'\s+', ' ', text)
text = text.strip()
return text
class SimpleTokenizer(object):
def __init__(self, bpe_path: str = default_bpe()):
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
merges = merges[1:49152-256-2+1]
merges = [tuple(merge.split()) for merge in merges]
vocab = list(bytes_to_unicode().values())
vocab = vocab + [v+'</w>' for v in vocab]
for merge in merges:
vocab.append(''.join(merge))
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
self.encoder = dict(zip(vocab, range(len(vocab))))
self.decoder = {v: k for k, v in self.encoder.items()}
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
pairs = get_pairs(word)
if not pairs:
return token+'</w>'
while True:
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word)-1 and word[i+1] == second:
new_word.append(first+second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
text = whitespace_clean(basic_clean(text)).lower()
for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
return bpe_tokens
def decode(self, tokens):
text = ''.join([self.decoder[token] for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
return text
def __call__(self, texts, context_length=77):
if isinstance(texts, str):
texts = [texts]
sot_token = self.encoder["<|startoftext|>"]
eot_token = self.encoder["<|endoftext|>"]
all_tokens = [[sot_token] + self.encode(text) + [eot_token] for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
tokens = tokens[:context_length]
result[i, :len(tokens)] = torch.tensor(tokens)
if len(result) == 1:
return result[0]
return result

8
utils.py

@ -0,0 +1,8 @@
import torch
def get_model(model):
if isinstance(model, torch.nn.DataParallel) \
or isinstance(model, torch.nn.parallel.DistributedDataParallel):
return model.module
else:
return model
Loading…
Cancel
Save