logo
Browse Source

slip operator update.

Signed-off-by: wxywb <xy.wang@zilliz.com>
main
wxywb 2 years ago
parent
commit
5b1a1a02e9
  1. 6
      __init__.py
  2. BIN
      bpe_simple_vocab_16e6.txt.gz
  3. 36
      models.py
  4. 63
      slip.py
  5. 8
      utils.py

6
__init__.py

@ -12,8 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .blip import Blip
from .slip import Slip
def blip(model_name: str, modality: str):
return Blip(model_name, modality)
def slip(model_name: str, modality: str):
return Slip(model_name, modality)

BIN
bpe_simple_vocab_16e6.txt.gz (Stored with Git LFS)

Binary file not shown.

36
models.py

@ -12,7 +12,7 @@ import timm
import torch
from torch import nn
import losses
#import losses
class LayerNorm(nn.LayerNorm):
@ -235,23 +235,23 @@ class SLIP(CLIP):
'aug2_embed': aug2_embed}
def get_loss(model, ssl_temp, ssl_scale):
if model.startswith('SLIP'):
ssl_loss = losses.SIMCLRLoss(temperature=ssl_temp)
return losses.SLIPLoss(ssl_loss, ssl_scale)
if model.startswith('CLIP'):
return losses.CLIPLoss()
if model.startswith('SIMCLR'):
return losses.SIMCLRLoss(temperature=ssl_temp)
def get_metric_names(model):
if model.startswith('SLIP'):
return ['loss', 'clip_loss', 'ssl_loss', 'clip_acc', 'ssl_acc']
elif model.startswith('CLIP'):
return ['loss', 'clip_loss', 'clip_acc']
else:
return ['loss', 'ssl_loss', 'ssl_acc']
#def get_loss(model, ssl_temp, ssl_scale):
# if model.startswith('SLIP'):
# ssl_loss = losses.SIMCLRLoss(temperature=ssl_temp)
# return losses.SLIPLoss(ssl_loss, ssl_scale)
# if model.startswith('CLIP'):
# return losses.CLIPLoss()
# if model.startswith('SIMCLR'):
# return losses.SIMCLRLoss(temperature=ssl_temp)
#
#
#def get_metric_names(model):
# if model.startswith('SLIP'):
# return ['loss', 'clip_loss', 'ssl_loss', 'clip_acc', 'ssl_acc']
# elif model.startswith('CLIP'):
# return ['loss', 'clip_loss', 'clip_acc']
# else:
# return ['loss', 'ssl_loss', 'ssl_acc']
@timm.models.registry.register_model

63
slip.py

@ -13,18 +13,20 @@
# limitations under the License.
import sys
import os
from pathlib import Path
from urllib.parse import urlparse
from collections import OrderedDict
import torch
from torchvision import transforms
from timm.models.hub import download_cached_file
from towhee import register
from towhee.operator.base import NNOperator, OperatorFlag
from towhee.types.arg import arg, to_image_color
from towhee.types.image_utils import from_pil, to_pil
from tokenizer import SimpleTokenizer
def get_model(model):
if isinstance(model, torch.nn.DataParallel) \
or isinstance(model, torch.nn.parallel.DistributedDataParallel):
@ -32,16 +34,52 @@ def get_model(model):
else:
return model
def is_url(url_or_filename):
parsed = urlparse(url_or_filename)
return parsed.scheme in ("http", "https")
def load_checkpoint(url_or_filename, models, device):
if is_url(url_or_filename):
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
checkpoint = torch.load(cached_file, map_location='cpu')
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location='cpu')
else:
raise RuntimeError('checkpoint url or path is invalid')
if is_url(url_or_filename):
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
checkpoint = torch.load(cached_file, map_location='cpu')
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location='cpu')
else:
raise RuntimeError('checkpoint url or path is invalid')
state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
state_dict[k.replace('module.', '')] = v
old_args = checkpoint['args']
model = getattr(models, old_args.model)(rand_embed=False,
ssl_mlp_dim=old_args.ssl_mlp_dim, ssl_emb_dim=old_args.ssl_emb_dim)
model.to(device)
model.load_state_dict(state_dict, strict=True)
return model
@register(output_schema=['vec'])
class Slip(NNOperator)
class Slip(NNOperator):
"""
SLIP multi-modal embedding operator
"""
def __init__(self, model_name: str, modality: str):
super().__init__()
sys.path.append(str(Path(__file__).parent))
import models
from tokenizer import SimpleTokenizer
self.tokenizer = SimpleTokenizer()
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self._modality = modality
self.model = load_checkpoint(self._configs()[model_name]['weights'], models, self.device)
self.model.to(self.device)
self.model.eval()
@ -57,17 +95,18 @@ class Slip(NNOperator)
def __call__(self, data):
if self._modality == 'image':
vec = self._inference_from_image(data)
elif self._modality == 'text':
vec = self._inference_from_text(data)
else:
raise ValueError("modality[{}] not implemented.".format(self._modality))
return vec.detach().cpu().numpy().flatten()
elif self._modality == 'text':
vec = self._inference_from_text(data)
else:
raise ValueError("modality[{}] not implemented.".format(self._modality))
vec = vec / vec.norm(dim=-1, keepdim=True)
return vec.detach().cpu().numpy().flatten()
def _inference_from_text(self, text):
texts = tokenizer(texts).cuda(non_blocking=True)
texts = texts.view(-1, 77).contiguous()
embedding = get_model(self.model).encode_text(texts)
embedding = embedding / embedding.norm(dim=-1, keepdim=True)
text = self.tokenizer(text).to(self.device)
text = text.view(-1, 77).contiguous()
embedding = get_model(self.model).encode_text(text)
return embedding
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):

8
utils.py

@ -1,8 +0,0 @@
import torch
def get_model(model):
if isinstance(model, torch.nn.DataParallel) \
or isinstance(model, torch.nn.parallel.DistributedDataParallel):
return model.module
else:
return model
Loading…
Cancel
Save