copied
Readme
Files and versions
2.4 KiB
Image-Text Retrieval Embdding with SLIP
author: David Wang
Description
This operator extracts features for image or text with SLIP, a multi-task learning framework for combining self-supervised learning and CLIP pre-training. This is an adaptation from facebookresearch/SLIP.
Code Example
Load an image from path './teddy.jpg' to generate an image embedding.
Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding.
Write the pipeline in simplified style:
import towhee
towhee.glob('./moon.jpeg') \
.image_decode() \
.image_text_embedding.slip(model_name='slip_vit_small', modality='image') \
.show()
towhee.dc(['moon in the night.']) \
.image_text_embedding.slip(model_name='slip_vit_small', modality='text') \
.show()
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.glob['path']('./moon.jpeg') \
.image_decode['path', 'img']() \
.image_text_embedding.slip['img', 'vec'](model_name='slip_vit_small', modality='image') \
.select['img', 'vec']() \
.show()
towhee.dc['text'](['moon in the night.']) \
.image_text_embedding.slip['text','vec'](model_name= 'slip_vit_small', modality='text') \
.select['text', 'vec']() \
.show()
Factory Constructor
Create the operator via the following factory method
slip(model_name, modality)
Parameters:
model_name: str
The model name of SLIP. Supported model names:
- slip_vit_small
- slip_vit_base
- slip_vit_large
modality: str
Which modality(image or text) is used to generate the embedding.
Interface
An image-text embedding operator takes a towhee image or string as input and generate an embedding in ndarray.
Parameters:
data: towhee.types.Image (a sub-class of numpy.ndarray) or str
The data (image or text based on specified modality) to generate embedding.
Returns: numpy.ndarray
The data embedding extracted by model.
2.4 KiB
Image-Text Retrieval Embdding with SLIP
author: David Wang
Description
This operator extracts features for image or text with SLIP, a multi-task learning framework for combining self-supervised learning and CLIP pre-training. This is an adaptation from facebookresearch/SLIP.
Code Example
Load an image from path './teddy.jpg' to generate an image embedding.
Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding.
Write the pipeline in simplified style:
import towhee
towhee.glob('./moon.jpeg') \
.image_decode() \
.image_text_embedding.slip(model_name='slip_vit_small', modality='image') \
.show()
towhee.dc(['moon in the night.']) \
.image_text_embedding.slip(model_name='slip_vit_small', modality='text') \
.show()
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.glob['path']('./moon.jpeg') \
.image_decode['path', 'img']() \
.image_text_embedding.slip['img', 'vec'](model_name='slip_vit_small', modality='image') \
.select['img', 'vec']() \
.show()
towhee.dc['text'](['moon in the night.']) \
.image_text_embedding.slip['text','vec'](model_name= 'slip_vit_small', modality='text') \
.select['text', 'vec']() \
.show()
Factory Constructor
Create the operator via the following factory method
slip(model_name, modality)
Parameters:
model_name: str
The model name of SLIP. Supported model names:
- slip_vit_small
- slip_vit_base
- slip_vit_large
modality: str
Which modality(image or text) is used to generate the embedding.
Interface
An image-text embedding operator takes a towhee image or string as input and generate an embedding in ndarray.
Parameters:
data: towhee.types.Image (a sub-class of numpy.ndarray) or str
The data (image or text based on specified modality) to generate embedding.
Returns: numpy.ndarray
The data embedding extracted by model.