logo
Browse Source

update the operator.

Signed-off-by: wxywb <xy.wang@zilliz.com>
main
wxywb 2 years ago
parent
commit
7210b706ac
  1. 19
      __init__.py
  2. 46
      taiyi.py

19
__init__.py

@ -0,0 +1,19 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .taiyi import Taiyi
def taiyi(model_name: str, modality: str):
return Taiyi(model_name, modality)

46
taiyi.py

@ -15,6 +15,16 @@ import torch
from transformers import BertForSequenceClassification, BertConfig, BertTokenizer
from transformers import CLIPProcessor, CLIPModel
import sys
from pathlib import Path
import torch
from torchvision import transforms
from towhee.types.image_utils import to_pil
from towhee.operator.base import NNOperator, OperatorFlag
from towhee.types.arg import arg, to_image_color
from towhee import register
@register(output_schema=['vec'])
class Taiyi(NNOperator):
"""
@ -23,10 +33,13 @@ class Taiyi(NNOperator):
def __init__(self, model_name: str, modality: str):
self.modality = modality
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.text_tokenizer = BertTokenizer.from_pretrained("IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese")
self.text_encoder = BertForSequenceClassification.from_pretrained("IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese").eval()
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
config = self._configs()[model_name]
self.text_tokenizer = BertTokenizer.from_pretrained(config['tokenizer'])
self.text_encoder = BertForSequenceClassification.from_pretrained(config['text_encoder']).eval()
self.clip_model = CLIPModel.from_pretrained(config['clip_model'])
self.processor = CLIPProcessor.from_pretrained(config['processor'])
def inference_single_data(self, data):
if self.modality == 'image':
@ -52,14 +65,29 @@ class Taiyi(NNOperator):
return results
def _inference_from_text(self, text):
self.text = self.text_tokenizer(text, return_tensors='pt', padding=True)['input_ids'].to(self.device)
text_features = text_encoder(text).logits
tokens = self.text_tokenizer(text, return_tensors='pt', padding=True)['input_ids'].to(self.device)
text_features = self.text_encoder(tokens).logits
return text_features
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):
image = to_pil(image)
image = self.processor(images=image.raw), return_tensors="pt")
image_features = clip_model.get_image_features(**image)
image = to_pil(img)
image = self.processor(images=image, return_tensors="pt")
image_features = self.clip_model.get_image_features(**image)
return image_features
def _configs(self):
config = {}
config['taiyi-clip-roberta-102m-chinese'] = {}
config['taiyi-clip-roberta-102m-chinese']['tokenizer'] = 'IDEA-CCNL/Taiyi-CLIP-Roberta-102M-Chinese'
config['taiyi-clip-roberta-102m-chinese']['text_encoder'] = 'IDEA-CCNL/Taiyi-CLIP-Roberta-102M-Chinese'
config['taiyi-clip-roberta-102m-chinese']['clip_model'] = 'openai/clip-vit-base-patch32'
config['taiyi-clip-roberta-102m-chinese']['processor'] = 'openai/clip-vit-base-patch32'
config['taiyi-clip-roberta-large-326m-chinese'] = {}
config['taiyi-clip-roberta-large-326m-chinese']['tokenizer'] = 'IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese'
config['taiyi-clip-roberta-large-326m-chinese']['text_encoder'] = 'IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese'
config['taiyi-clip-roberta-large-326m-chinese']['clip_model'] = 'openai/clip-vit-large-patch14'
config['taiyi-clip-roberta-large-326m-chinese']['processor'] = 'openai/clip-vit-large-patch14'
return config

Loading…
Cancel
Save