taiyi
copied
wxywb
2 years ago
2 changed files with 65 additions and 0 deletions
@ -0,0 +1,65 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
import torch |
||||
|
from transformers import BertForSequenceClassification, BertConfig, BertTokenizer |
||||
|
from transformers import CLIPProcessor, CLIPModel |
||||
|
|
||||
|
@register(output_schema=['vec']) |
||||
|
class Taiyi(NNOperator): |
||||
|
""" |
||||
|
Taiyi multi-modal embedding operator |
||||
|
""" |
||||
|
def __init__(self, model_name: str, modality: str): |
||||
|
self.modality = modality |
||||
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
||||
|
self.text_tokenizer = BertTokenizer.from_pretrained("IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese") |
||||
|
self.text_encoder = BertForSequenceClassification.from_pretrained("IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese").eval() |
||||
|
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14") |
||||
|
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") |
||||
|
|
||||
|
def inference_single_data(self, data): |
||||
|
if self.modality == 'image': |
||||
|
vec = self._inference_from_image(data) |
||||
|
elif self.modality == 'text': |
||||
|
vec = self._inference_from_text(data) |
||||
|
else: |
||||
|
raise ValueError("modality[{}] not implemented.".format(self._modality)) |
||||
|
return vec.detach().cpu().numpy().flatten() |
||||
|
|
||||
|
def __call__(self, data): |
||||
|
if not isinstance(data, list): |
||||
|
data = [data] |
||||
|
else: |
||||
|
data = data |
||||
|
results = [] |
||||
|
for single_data in data: |
||||
|
result = self.inference_single_data(single_data) |
||||
|
results.append(result) |
||||
|
if len(data) == 1: |
||||
|
return results[0] |
||||
|
else: |
||||
|
return results |
||||
|
|
||||
|
def _inference_from_text(self, text): |
||||
|
self.text = self.text_tokenizer(text, return_tensors='pt', padding=True)['input_ids'].to(self.device) |
||||
|
text_features = text_encoder(text).logits |
||||
|
return text_features |
||||
|
|
||||
|
@arg(1, to_image_color('RGB')) |
||||
|
def _inference_from_image(self, img): |
||||
|
image = to_pil(image) |
||||
|
image = self.processor(images=image.raw), return_tensors="pt") |
||||
|
image_features = clip_model.get_image_features(**image) |
||||
|
return image_features |
||||
|
|
Loading…
Reference in new issue