taiyi
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
65 lines
2.6 KiB
65 lines
2.6 KiB
# Copyright 2021 Zilliz. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import torch
|
|
from transformers import BertForSequenceClassification, BertConfig, BertTokenizer
|
|
from transformers import CLIPProcessor, CLIPModel
|
|
|
|
@register(output_schema=['vec'])
|
|
class Taiyi(NNOperator):
|
|
"""
|
|
Taiyi multi-modal embedding operator
|
|
"""
|
|
def __init__(self, model_name: str, modality: str):
|
|
self.modality = modality
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
self.text_tokenizer = BertTokenizer.from_pretrained("IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese")
|
|
self.text_encoder = BertForSequenceClassification.from_pretrained("IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese").eval()
|
|
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
|
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
|
|
|
def inference_single_data(self, data):
|
|
if self.modality == 'image':
|
|
vec = self._inference_from_image(data)
|
|
elif self.modality == 'text':
|
|
vec = self._inference_from_text(data)
|
|
else:
|
|
raise ValueError("modality[{}] not implemented.".format(self._modality))
|
|
return vec.detach().cpu().numpy().flatten()
|
|
|
|
def __call__(self, data):
|
|
if not isinstance(data, list):
|
|
data = [data]
|
|
else:
|
|
data = data
|
|
results = []
|
|
for single_data in data:
|
|
result = self.inference_single_data(single_data)
|
|
results.append(result)
|
|
if len(data) == 1:
|
|
return results[0]
|
|
else:
|
|
return results
|
|
|
|
def _inference_from_text(self, text):
|
|
self.text = self.text_tokenizer(text, return_tensors='pt', padding=True)['input_ids'].to(self.device)
|
|
text_features = text_encoder(text).logits
|
|
return text_features
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
def _inference_from_image(self, img):
|
|
image = to_pil(image)
|
|
image = self.processor(images=image.raw), return_tensors="pt")
|
|
image_features = clip_model.get_image_features(**image)
|
|
return image_features
|
|
|