|
|
|
import os
|
|
|
|
import numpy
|
|
|
|
from pathlib import Path
|
|
|
|
from PIL import Image as PImage
|
|
|
|
from torchvision import transforms
|
|
|
|
|
|
|
|
from towhee import register
|
|
|
|
from towhee.operator import Operator, OperatorFlag
|
|
|
|
from towhee.types import arg, to_image_color
|
|
|
|
from towhee._types import Image
|
|
|
|
import warnings
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
|
|
|
|
@register(output_schema=['styled_image'], flag=OperatorFlag.STATELESS | OperatorFlag.REUSEABLE,)
|
|
|
|
class Animegan(Operator):
|
|
|
|
"""
|
|
|
|
PyTorch model for image embedding.
|
|
|
|
"""
|
|
|
|
def __init__(self, model_name: str, framework: str = 'pytorch') -> None:
|
|
|
|
super().__init__()
|
|
|
|
if framework == 'pytorch':
|
|
|
|
import importlib.util
|
|
|
|
path = os.path.join(str(Path(__file__).parent), 'pytorch', 'model.py')
|
|
|
|
opname = os.path.basename(str(Path(__file__))).split('.')[0]
|
|
|
|
spec = importlib.util.spec_from_file_location(opname, path)
|
|
|
|
module = importlib.util.module_from_spec(spec)
|
|
|
|
spec.loader.exec_module(module)
|
|
|
|
self.model = module.Model(model_name)
|
|
|
|
self.tfms = transforms.Compose([
|
|
|
|
transforms.ToTensor()
|
|
|
|
])
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
|
|
def __call__(self, image):
|
|
|
|
img = self.tfms(image).unsqueeze(0)
|
|
|
|
styled_image = self.model(img)
|
|
|
|
|
|
|
|
styled_image = numpy.transpose(styled_image, (1,2,0))
|
|
|
|
styled_image = PImage.fromarray((styled_image * 255).astype(numpy.uint8))
|
|
|
|
styled_image = numpy.array(styled_image)
|
|
|
|
styled_image = styled_image[:, :, ::-1].copy()
|
|
|
|
|
|
|
|
return Image(styled_image, 'RGB')
|