- [What is a Generative Adversarial Network? An Easy Guide](https://zilliz.com/glossary/generative-adversarial-networks): Just like we classify animal fossils into domains, kingdoms, and phyla, we classify AI networks, too. At the highest level, we classify AI networks as "discriminative" and "generative." A generative neural network is an AI that creates something new. This differs from a discriminative network, which classifies something that already exists into particular buckets. Kind of like we're doing right now, by bucketing generative adversarial networks (GANs) into appropriate classifications.
So, if you were in a situation where you wanted to use textual tags to create a new visual image, like with Midjourney, you'd use a generative network. However, if you had a giant pile of data that you needed to classify and tag, you'd use a discriminative model.
- [Multimodal RAG locally with CLIP and Llama3 - Zilliz blog](https://zilliz.com/blog/multimodal-RAG-with-CLIP-Llama3-and-milvus): A tutorial walks you through how to build a multimodal RAG with CLIP, Llama3, and Milvus.
- [Generative AI for Creative Applications using Storia Lab - Zilliz blog](https://zilliz.com/blog/generative-ai-for-creative-applications-using-storia-lab): This post discusses how Storia AI generates and edits images through simple text prompts or clicks and how we can leverage Storia AI and Milvus to build multimodal RAG.
- [Image Embeddings for Enhanced Image Search - Zilliz blog](https://zilliz.com/learn/image-embeddings-for-enhanced-image-search): Image Embeddings are the core of modern computer vision algorithms. Understand their implementation and use cases and explore different image embedding models.
- [Real-Time GenAI without Hallucination Using Confluent & Zilliz Cloud](https://zilliz.com/product/integrations/confluent): nan