copied
Readme
Files and versions
1.7 KiB
Animating using AnimeGanV2
author: Filip Haltmayer
Description
Convert an image into an animated image using AnimeganV2
.
Code Example
Load an image from path './test.png'.
Write the pipeline in simplified style:
import towhee
towhee.glob('/Users/chenshiyu/workspace/data/pic/test.png') \
.image_decode.cv2() \
.img2img_translation.animegan(model_name = 'hayao') \
.show()
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.glob['path']('/Users/chenshiyu/workspace/data/pic/test.png') \
.image_decode.cv2['path', 'origin']() \
.img2img_translation.animegan['origin', 'transformed'](model_name = 'hayao') \
.select('origin', 'transformed') \
.show()
Factory Constructor
Create the operator via the following factory method
img2img_translation.animegan(model_name = 'which anime model to use')
Model options:
- celeba
- facepaintv1
- facepaintv2
- hayao
- paprika
- shinkai
Interface
Takes in a numpy rgb image in channels first. It transforms input into animated image in numpy form.
Parameters:
model_name: str
Which model to use for transfer.
framework: str
Which ML framework being used, for now only supports PyTorch.
Returns: numpy.ndarray
The new image.
Reference
Jie Chen, Gang Liu, Xin Chen "AnimeGAN: A Novel Lightweight GAN for Photo Animation." ISICA 2019: Artificial Intelligence Algorithms and Applications pp 242-256, 2019.
1.7 KiB
Animating using AnimeGanV2
author: Filip Haltmayer
Description
Convert an image into an animated image using AnimeganV2
.
Code Example
Load an image from path './test.png'.
Write the pipeline in simplified style:
import towhee
towhee.glob('/Users/chenshiyu/workspace/data/pic/test.png') \
.image_decode.cv2() \
.img2img_translation.animegan(model_name = 'hayao') \
.show()
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.glob['path']('/Users/chenshiyu/workspace/data/pic/test.png') \
.image_decode.cv2['path', 'origin']() \
.img2img_translation.animegan['origin', 'transformed'](model_name = 'hayao') \
.select('origin', 'transformed') \
.show()
Factory Constructor
Create the operator via the following factory method
img2img_translation.animegan(model_name = 'which anime model to use')
Model options:
- celeba
- facepaintv1
- facepaintv2
- hayao
- paprika
- shinkai
Interface
Takes in a numpy rgb image in channels first. It transforms input into animated image in numpy form.
Parameters:
model_name: str
Which model to use for transfer.
framework: str
Which ML framework being used, for now only supports PyTorch.
Returns: numpy.ndarray
The new image.
Reference
Jie Chen, Gang Liu, Xin Chen "AnimeGAN: A Novel Lightweight GAN for Photo Animation." ISICA 2019: Artificial Intelligence Algorithms and Applications pp 242-256, 2019.