copied
Readme
Files and versions
2.1 KiB
Animating using AnimeGanV2
author: Filip Haltmayer
Description
Convert an image into an animated image using AnimeganV2
.
Code Example
Load an image from path './test.png'.
Write the pipeline in simplified style:
import towhee
towhee.glob('./test.png') \
.image_decode() \
.img2img_translation.animegan(model_name = 'hayao') \
.show()
Write a pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.glob['path']('./test.png') \
.image_decode['path', 'origin']() \
.img2img_translation.animegan['origin', 'facepaintv2'](model_name = 'facepaintv2') \
.img2img_translation.animegan['origin', 'hayao'](model_name = 'hayao') \
.img2img_translation.animegan['origin', 'paprika'](model_name = 'paprika') \
.img2img_translation.animegan['origin', 'shinkai'](model_name = 'shinkai') \
.select['origin', 'facepaintv2', 'hayao', 'paprika', 'shinkai']() \
.show()
Factory Constructor
Create the operator via the following factory method
img2img_translation.animegan(model_name = 'which anime model to use')
Model options:
- celeba
- facepaintv1
- facepaintv2
- hayao
- paprika
- shinkai
Interface
Takes in a numpy rgb image in channels first. It transforms input into animated image in numpy form.
Parameters:
model_name: str
Which model to use for transfer.
framework: str
Which ML framework being used, for now only supports PyTorch.
device: str
Which device being used('cpu' or 'cuda'), defaults to 'cpu'.
Returns: towhee.types.Image (a sub-class of numpy.ndarray)
The new image.
Reference
Jie Chen, Gang Liu, Xin Chen "AnimeGAN: A Novel Lightweight GAN for Photo Animation." ISICA 2019: Artificial Intelligence Algorithms and Applications pp 242-256, 2019.
2.1 KiB
Animating using AnimeGanV2
author: Filip Haltmayer
Description
Convert an image into an animated image using AnimeganV2
.
Code Example
Load an image from path './test.png'.
Write the pipeline in simplified style:
import towhee
towhee.glob('./test.png') \
.image_decode() \
.img2img_translation.animegan(model_name = 'hayao') \
.show()
Write a pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.glob['path']('./test.png') \
.image_decode['path', 'origin']() \
.img2img_translation.animegan['origin', 'facepaintv2'](model_name = 'facepaintv2') \
.img2img_translation.animegan['origin', 'hayao'](model_name = 'hayao') \
.img2img_translation.animegan['origin', 'paprika'](model_name = 'paprika') \
.img2img_translation.animegan['origin', 'shinkai'](model_name = 'shinkai') \
.select['origin', 'facepaintv2', 'hayao', 'paprika', 'shinkai']() \
.show()
Factory Constructor
Create the operator via the following factory method
img2img_translation.animegan(model_name = 'which anime model to use')
Model options:
- celeba
- facepaintv1
- facepaintv2
- hayao
- paprika
- shinkai
Interface
Takes in a numpy rgb image in channels first. It transforms input into animated image in numpy form.
Parameters:
model_name: str
Which model to use for transfer.
framework: str
Which ML framework being used, for now only supports PyTorch.
device: str
Which device being used('cpu' or 'cuda'), defaults to 'cpu'.
Returns: towhee.types.Image (a sub-class of numpy.ndarray)
The new image.
Reference
Jie Chen, Gang Liu, Xin Chen "AnimeGAN: A Novel Lightweight GAN for Photo Animation." ISICA 2019: Artificial Intelligence Algorithms and Applications pp 242-256, 2019.