Create the operator via the following factory method
@ -29,10 +35,33 @@ Create the operator via the following factory method
**Parameters:**
***model_name:*** *str*
***model_name:*** `str`
A string indicating which model to use.
A string indicating which model to use. Available options:
***thresh:*** *float*
1. `faster_rcnn_resnet50_c4`
2. `faster_rcnn_resnet50_dc5`
3. `faster_rcnn_resnet50_fpn`
4. `faster_rcnn_resnet101_c4`
5. `faster_rcnn_resnet101_dc5`
6. `faster_rcnn_resnet101_fpn`
7. `faster_rcnn_resnext101`
8. `retinanet_resnet50`
9. `retinanet_resnet101`
***thresh:*** `float`
The threshold value for which an object is detected (default value: `0.5`). Set this value lower to detect more objects at the expense of accuracy, or higher to reduce the total number of detections but increase the quality of detected objects.
### Interface
This operator takes an image as input. It first detects the objects appeared in the image, and generates a bounding box around each object.
The return value is a tuple of `(boxes, classes, scores)`. `boxes` is a list of bounding boxes. Each bounding box is represented as a 1-dimensional numpy array consisting of the top-left and the bottom-right corners, i.e. `numpy.ndarray([x1, y1, x2, y2])`. `classes` is a list of prediction labels for each bounding box. `*scores*` is a list of confidence scores corresponding to each class and bounding box.