sbert
copied
2 changed files with 239 additions and 8 deletions
@ -0,0 +1,98 @@ |
|||||
|
from towhee import ops |
||||
|
import numpy |
||||
|
import onnx |
||||
|
import onnxruntime |
||||
|
|
||||
|
import os |
||||
|
from pathlib import Path |
||||
|
import logging |
||||
|
import platform |
||||
|
import psutil |
||||
|
|
||||
|
op = ops.sentence_embedding.sbert().get_op() |
||||
|
# full_models = op.supported_model_names() |
||||
|
# checked_models = AutoTransformers.supported_model_names(format='onnx') |
||||
|
# models = [x for x in full_models if x not in checked_models] |
||||
|
models = ['all-MiniLM-L12-v2'] |
||||
|
test_txt = 'hello, world.' |
||||
|
atol = 1e-3 |
||||
|
log_path = 'sbert_onnx.log' |
||||
|
f = open('onnx.csv', 'w+') |
||||
|
f.write('model,load_op,save_onnx,check_onnx,run_onnx,accuracy\n') |
||||
|
|
||||
|
logger = logging.getLogger('transformers_onnx') |
||||
|
logger.setLevel(logging.DEBUG) |
||||
|
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') |
||||
|
fh = logging.FileHandler(log_path) |
||||
|
fh.setLevel(logging.DEBUG) |
||||
|
fh.setFormatter(formatter) |
||||
|
logger.addHandler(fh) |
||||
|
ch = logging.StreamHandler() |
||||
|
ch.setLevel(logging.ERROR) |
||||
|
ch.setFormatter(formatter) |
||||
|
logger.addHandler(ch) |
||||
|
|
||||
|
logger.debug(f'machine: {platform.platform()}-{platform.processor()}') |
||||
|
logger.debug(f'free/available/total mem: {round(psutil.virtual_memory().free / (1024.0 ** 3))}' |
||||
|
f'/{round(psutil.virtual_memory().available / (1024.0 ** 3))}' |
||||
|
f'/{round(psutil.virtual_memory().total / (1024.0 ** 3))} GB') |
||||
|
logger.debug(f'cpu: {psutil.cpu_count()}') |
||||
|
|
||||
|
|
||||
|
status = None |
||||
|
for name in models: |
||||
|
logger.info(f'***{name}***') |
||||
|
if status: |
||||
|
f.write(','.join(status) + '\n') |
||||
|
status = [name] + ['fail'] * 5 |
||||
|
try: |
||||
|
op = ops.text_embedding.sentence_transformers(model_name=name, device='cpu').get_op() |
||||
|
out1 = op(test_txt) |
||||
|
logger.info('OP LOADED.') |
||||
|
status[1] = 'success' |
||||
|
except Exception as e: |
||||
|
logger.error(f'FAIL TO LOAD OP: {e}') |
||||
|
continue |
||||
|
try: |
||||
|
onnx_path = str(op.save_model('onnx')) |
||||
|
logger.info('ONNX SAVED.') |
||||
|
status[2] = 'success' |
||||
|
except Exception as e: |
||||
|
logger.error(f'FAIL TO SAVE ONNX: {e}') |
||||
|
continue |
||||
|
try: |
||||
|
try: |
||||
|
onnx_model = onnx.load(onnx_path) |
||||
|
onnx.checker.check_model(onnx_model) |
||||
|
except Exception: |
||||
|
saved_onnx = onnx.load(onnx_path, load_external_data=False) |
||||
|
onnx.checker.check_model(saved_onnx) |
||||
|
logger.info('ONNX CHECKED.') |
||||
|
status[3] = 'success' |
||||
|
except Exception as e: |
||||
|
logger.error(f'FAIL TO CHECK ONNX: {e}') |
||||
|
pass |
||||
|
try: |
||||
|
inputs = op.tokenize([test_txt]) |
||||
|
sess = onnxruntime.InferenceSession(onnx_path, providers=onnxruntime.get_available_providers()) |
||||
|
onnx_inputs = {} |
||||
|
for n in sess.get_inputs(): |
||||
|
k = n.name |
||||
|
if k in inputs: |
||||
|
onnx_inputs[k] = inputs[k].cpu().detach().numpy() |
||||
|
out2 = sess.run(None, input_feed=onnx_inputs)[0].squeeze(0) |
||||
|
logger.info('ONNX WORKED.') |
||||
|
status[4] = 'success' |
||||
|
if numpy.allclose(out1, out2, atol=atol): |
||||
|
logger.info('Check accuracy: OK') |
||||
|
status[5] = 'success' |
||||
|
else: |
||||
|
logger.info(f'Check accuracy: atol is larger than {atol}.') |
||||
|
except Exception as e: |
||||
|
logger.error(f'FAIL TO RUN ONNX: {e}') |
||||
|
continue |
||||
|
|
||||
|
if status: |
||||
|
f.write(','.join(status) + '\n') |
||||
|
|
||||
|
print('Finished.') |
Loading…
Reference in new issue