logo
Readme
Files and versions

107 lines
3.5 KiB

from towhee import ops
import torch
import numpy
import onnx
import onnxruntime
import os
from pathlib import Path
import logging
import platform
import psutil
import warnings
from transformers import logging as t_logging
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
warnings.filterwarnings("ignore")
t_logging.set_verbosity_error()
# op = ops.sentence_embedding.transformers().get_op()
# full_models = op.supported_model_names()
# checked_models = AutoTransformers.supported_model_names(format='onnx')
# models = [x for x in full_models if x not in checked_models]
models = ['distilbert-base-cased', 'paraphrase-albert-small-v2']
test_txt = 'hello, world.'
atol = 1e-3
log_path = 'transformers_onnx.log'
f = open('onnx.csv', 'w+')
f.write('model,load_op,save_onnx,check_onnx,run_onnx,accuracy\n')
logger = logging.getLogger('transformers_onnx')
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh = logging.FileHandler(log_path)
fh.setLevel(logging.DEBUG)
fh.setFormatter(formatter)
logger.addHandler(fh)
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
ch.setFormatter(formatter)
logger.addHandler(ch)
logger.debug(f'machine: {platform.platform()}-{platform.processor()}')
logger.debug(f'free/available/total mem: {round(psutil.virtual_memory().free / (1024.0 ** 3))}'
f'/{round(psutil.virtual_memory().available / (1024.0 ** 3))}'
f'/{round(psutil.virtual_memory().total / (1024.0 ** 3))} GB')
logger.debug(f'cpu: {psutil.cpu_count()}')
status = None
for name in models:
logger.info(f'***{name}***')
if status:
f.write(','.join(status) + '\n')
status = [name] + ['fail'] * 5
try:
op = ops.sentence_embedding.transformers(model_name=name).get_op()
out1 = op(test_txt)
logger.info('OP LOADED.')
status[1] = 'success'
except Exception as e:
logger.error(f'FAIL TO LOAD OP: {e}')
continue
saved_name = op.model_name.replace('/', '-')
onnx_path = f'saved/onnx/{saved_name}.onnx'
try:
op.save_model(model_type='onnx')
logger.info('ONNX SAVED.')
status[2] = 'success'
except Exception as e:
logger.error(f'FAIL TO SAVE ONNX: {e}')
continue
try:
try:
onnx_model = onnx.load(onnx_path)
onnx.checker.check_model(onnx_model)
except Exception:
saved_onnx = onnx.load(onnx_path, load_external_data=False)
onnx.checker.check_model(saved_onnx)
logger.info('ONNX CHECKED.')
status[3] = 'success'
except Exception as e:
logger.error(f'FAIL TO CHECK ONNX: {e}')
pass
try:
sess = onnxruntime.InferenceSession(onnx_path,
providers=onnxruntime.get_available_providers())
inputs = op.tokenizer(test_txt, return_tensors='np')
out2 = sess.run(output_names=['last_hidden_state'], input_feed=dict(inputs))[0]
new_inputs = op.tokenizer(test_txt, return_tensors='pt')
out2 = op.post_proc(torch.from_numpy(out2), new_inputs)
logger.info('ONNX WORKED.')
status[4] = 'success'
if numpy.allclose(out1, out2, atol=atol):
logger.info('Check accuracy: OK')
status[5] = 'success'
else:
logger.info(f'Check accuracy: atol is larger than {atol}.')
except Exception as e:
logger.error(f'FAIL TO RUN ONNX: {e}')
continue
if status:
f.write(','.join(status) + '\n')
print('Finished.')