|
|
|
# Sentence Embedding with Transformers
|
|
|
|
|
|
|
|
*author: [Jael Gu](https://github.com/jaelgu)*
|
|
|
|
|
|
|
|
<br />
|
|
|
|
|
|
|
|
## Description
|
|
|
|
|
|
|
|
A sentence embedding operator generates one embedding vector in ndarray for each input text.
|
|
|
|
The embedding represents the semantic information of the whole input text as one vector.
|
|
|
|
This operator is implemented with pre-trained models from [Huggingface Transformers](https://huggingface.co/docs/transformers).
|
|
|
|
|
|
|
|
<br />
|
|
|
|
|
|
|
|
## Code Example
|
|
|
|
|
|
|
|
Use the pre-trained model 'sentence-transformers/paraphrase-albert-small-v2'
|
|
|
|
to generate an embedding for the sentence "Hello, world.".
|
|
|
|
|
|
|
|
*Write a pipeline with explicit inputs/outputs name specifications:*
|
|
|
|
|
|
|
|
```python
|
|
|
|
from towhee.dc2 import pipe, ops, DataCollection
|
|
|
|
|
|
|
|
p = (
|
|
|
|
pipe.input('text')
|
|
|
|
.map('text', 'vec',
|
|
|
|
ops.sentence_embedding.transformers(model_name='sentence-transformers/paraphrase-albert-small-v2'))
|
|
|
|
.output('text', 'vec')
|
|
|
|
)
|
|
|
|
|
|
|
|
DataCollection(p('Hello, world.')).show()
|
|
|
|
```
|
|
|
|
|
|
|
|
<img src="./result.png" width="800px"/>
|
|
|
|
|
|
|
|
<br />
|
|
|
|
|
|
|
|
## Factory Constructor
|
|
|
|
|
|
|
|
Create the operator via the following factory method:
|
|
|
|
|
|
|
|
***sentence_embedding.transformers(model_name=None)***
|
|
|
|
|
|
|
|
**Parameters:**
|
|
|
|
|
|
|
|
***model_name***: *str*
|
|
|
|
|
|
|
|
The model name in string, defaults to None.
|
|
|
|
If None, the operator will be initialized without specified model.
|
|
|
|
|
|
|
|
Supported model names: NLP transformers models listed in [Huggingface Models](https://huggingface.co/models).
|
|
|
|
Please note that only models listed in `supported_model_names` are tested.
|
|
|
|
You can refer to [Towhee Pipeline]() for model performance.
|
|
|
|
|
|
|
|
***checkpoint_path***: *str*
|
|
|
|
|
|
|
|
The path to local checkpoint, defaults to None.
|
|
|
|
If None, the operator will download and load pretrained model by `model_name` from Huggingface transformers.
|
|
|
|
|
|
|
|
***tokenizer***: *object*
|
|
|
|
|
|
|
|
The method to tokenize input text, defaults to None.
|
|
|
|
If None, the operator will use default tokenizer by `model_name` from Huggingface transformers.
|
|
|
|
|
|
|
|
<br />
|
|
|
|
|
|
|
|
## Interface
|
|
|
|
|
|
|
|
The operator takes a piece of text in string as input.
|
|
|
|
It loads tokenizer and pre-trained model using model name,
|
|
|
|
and then return a text emabedding in numpy.ndarray.
|
|
|
|
|
|
|
|
***\_\_call\_\_(txt)***
|
|
|
|
|
|
|
|
**Parameters:**
|
|
|
|
|
|
|
|
***data***: *Union[str, list]*
|
|
|
|
|
|
|
|
The text in string or a list of texts.
|
|
|
|
|
|
|
|
**Returns**:
|
|
|
|
|
|
|
|
*numpy.ndarray or list*
|
|
|
|
|
|
|
|
The text embedding (or token embeddings) extracted by model.
|
|
|
|
If `data` is string, the operator returns an embedding in numpy.ndarray with shape of (dim,).
|
|
|
|
If `data` is a list, the operator returns a list of embedding(s) with length of input list.
|
|
|
|
|
|
|
|
<br />
|
|
|
|
|
|
|
|
***save_model(format='pytorch', path='default')***
|
|
|
|
|
|
|
|
Save model to local with specified format.
|
|
|
|
|
|
|
|
**Parameters:**
|
|
|
|
|
|
|
|
***format***: *str*
|
|
|
|
|
|
|
|
The format to export model as, such as 'pytorch', 'torchscript', 'onnx',
|
|
|
|
defaults to 'pytorch'.
|
|
|
|
|
|
|
|
***path***: *str*
|
|
|
|
|
|
|
|
The path where exported model is saved to.
|
|
|
|
By default, it will save model to `saved` directory under the operator cache.
|
|
|
|
|
|
|
|
```python
|
|
|
|
from towhee import ops
|
|
|
|
|
|
|
|
op = ops.sentence_embedding.transformers(model_name='sentence-transformers/paraphrase-albert-small-v2').get_op()
|
|
|
|
op.save_model('onnx', 'test.onnx')
|
|
|
|
```
|
|
|
|
PosixPath('/Home/.towhee/operators/sentence-embedding/transformers/main/test.onnx')
|
|
|
|
|
|
|
|
<br />
|
|
|
|
|
|
|
|
***supported_model_names(format=None)***
|
|
|
|
|
|
|
|
Get a list of all supported model names or supported model names for specified model format.
|
|
|
|
|
|
|
|
**Parameters:**
|
|
|
|
|
|
|
|
***format***: *str*
|
|
|
|
|
|
|
|
The model format such as 'pytorch', 'torchscript', 'onnx'.
|
|
|
|
|
|
|
|
```python
|
|
|
|
from towhee import ops
|
|
|
|
|
|
|
|
|
|
|
|
op = ops.sentence_embedding.transformers().get_op()
|
|
|
|
full_list = op.supported_model_names()
|
|
|
|
onnx_list = op.supported_model_names(format='onnx')
|
|
|
|
```
|