transformers
copied
ChengZi
2 years ago
3 changed files with 915 additions and 1 deletions
@ -0,0 +1,420 @@ |
|||||
|
# This script is hacked and modified from https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py |
||||
|
# For more specified training tasks, please refer https://github.com/huggingface/transformers/tree/main/examples/pytorch |
||||
|
import dataclasses |
||||
|
import logging |
||||
|
import math |
||||
|
import os |
||||
|
import sys |
||||
|
from dataclasses import dataclass, field |
||||
|
from itertools import chain |
||||
|
from typing import Optional |
||||
|
|
||||
|
import transformers |
||||
|
from transformers import ( |
||||
|
MODEL_FOR_CAUSAL_LM_MAPPING, |
||||
|
TrainingArguments, |
||||
|
default_data_collator, |
||||
|
is_torch_tpu_available, |
||||
|
set_seed, |
||||
|
) |
||||
|
from transformers.testing_utils import CaptureLogger |
||||
|
from transformers.trainer_utils import get_last_checkpoint |
||||
|
|
||||
|
logger = logging.getLogger(__name__) |
||||
|
|
||||
|
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys()) |
||||
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) |
||||
|
|
||||
|
|
||||
|
def dataclass_from_dict(klass, d): |
||||
|
try: |
||||
|
fieldtypes = {f.name: f.type for f in dataclasses.fields(klass)} |
||||
|
return klass(**{f: dataclass_from_dict(fieldtypes[f], d[f]) for f in d}) |
||||
|
except: |
||||
|
return d # Not a dataclass field |
||||
|
|
||||
|
|
||||
|
@dataclass |
||||
|
class DataTrainingArguments: |
||||
|
""" |
||||
|
Arguments pertaining to what data we are going to input our model for training and eval. |
||||
|
""" |
||||
|
|
||||
|
dataset_name: Optional[str] = field( |
||||
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
||||
|
) |
||||
|
dataset_config_name: Optional[str] = field( |
||||
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
||||
|
) |
||||
|
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) |
||||
|
validation_file: Optional[str] = field( |
||||
|
default=None, |
||||
|
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, |
||||
|
) |
||||
|
max_train_samples: Optional[int] = field( |
||||
|
default=None, |
||||
|
metadata={ |
||||
|
"help": ( |
||||
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
||||
|
"value if set." |
||||
|
) |
||||
|
}, |
||||
|
) |
||||
|
max_eval_samples: Optional[int] = field( |
||||
|
default=None, |
||||
|
metadata={ |
||||
|
"help": ( |
||||
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
||||
|
"value if set." |
||||
|
) |
||||
|
}, |
||||
|
) |
||||
|
|
||||
|
block_size: Optional[int] = field( |
||||
|
default=None, |
||||
|
metadata={ |
||||
|
"help": ( |
||||
|
"Optional input sequence length after tokenization. " |
||||
|
"The training dataset will be truncated in block of this size for training. " |
||||
|
"Default to the model max input length for single sentence inputs (take into account special tokens)." |
||||
|
) |
||||
|
}, |
||||
|
) |
||||
|
overwrite_cache: bool = field( |
||||
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
||||
|
) |
||||
|
validation_split_percentage: Optional[int] = field( |
||||
|
default=5, |
||||
|
metadata={ |
||||
|
"help": "The percentage of the train set used as validation set in case there's no validation split" |
||||
|
}, |
||||
|
) |
||||
|
preprocessing_num_workers: Optional[int] = field( |
||||
|
default=None, |
||||
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
||||
|
) |
||||
|
keep_linebreaks: bool = field( |
||||
|
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."} |
||||
|
) |
||||
|
|
||||
|
def __post_init__(self): |
||||
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None: |
||||
|
raise ValueError("Need either a dataset name or a training/validation file.") |
||||
|
else: |
||||
|
if self.train_file is not None: |
||||
|
extension = self.train_file.split(".")[-1] |
||||
|
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." |
||||
|
if self.validation_file is not None: |
||||
|
extension = self.validation_file.split(".")[-1] |
||||
|
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." |
||||
|
|
||||
|
|
||||
|
def train_clm_with_hf_trainer(model, |
||||
|
tokenizer, |
||||
|
data_args, |
||||
|
training_args, |
||||
|
**kwargs): |
||||
|
import evaluate |
||||
|
import datasets |
||||
|
from transformers import Trainer |
||||
|
from datasets import load_dataset |
||||
|
from towhee.trainer.training_config import get_dataclasses_help |
||||
|
|
||||
|
print('train clm with hugging face transformers trainer') |
||||
|
|
||||
|
print('**** DataTrainingArguments ****') |
||||
|
get_dataclasses_help(DataTrainingArguments) |
||||
|
data_args = dataclass_from_dict(DataTrainingArguments, data_args) |
||||
|
|
||||
|
print('**** TrainingArguments ****') |
||||
|
get_dataclasses_help(TrainingArguments) |
||||
|
training_args = dataclass_from_dict(TrainingArguments, training_args) |
||||
|
|
||||
|
# Setup logging |
||||
|
logging.basicConfig( |
||||
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
||||
|
datefmt="%m/%d/%Y %H:%M:%S", |
||||
|
handlers=[logging.StreamHandler(sys.stdout)], |
||||
|
) |
||||
|
|
||||
|
log_level = training_args.get_process_log_level() |
||||
|
logger.setLevel(log_level) |
||||
|
datasets.utils.logging.set_verbosity(log_level) |
||||
|
transformers.utils.logging.set_verbosity(log_level) |
||||
|
transformers.utils.logging.enable_default_handler() |
||||
|
transformers.utils.logging.enable_explicit_format() |
||||
|
|
||||
|
# Log on each process the small summary: |
||||
|
logger.warning( |
||||
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" |
||||
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
||||
|
) |
||||
|
logger.info(f"Training/evaluation parameters {training_args}") |
||||
|
|
||||
|
# Detecting last checkpoint. |
||||
|
last_checkpoint = None |
||||
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
||||
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
||||
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
||||
|
raise ValueError( |
||||
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
||||
|
"Use --overwrite_output_dir to overcome." |
||||
|
) |
||||
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
||||
|
logger.info( |
||||
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
||||
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
||||
|
) |
||||
|
|
||||
|
# Set seed before initializing model. |
||||
|
set_seed(training_args.seed) |
||||
|
|
||||
|
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) |
||||
|
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ |
||||
|
# (the dataset will be downloaded automatically from the datasets Hub). |
||||
|
# |
||||
|
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called |
||||
|
# 'text' is found. You can easily tweak this behavior (see below). |
||||
|
# |
||||
|
# In distributed training, the load_dataset function guarantee that only one local process can concurrently |
||||
|
# download the dataset. |
||||
|
if data_args.dataset_name is not None: |
||||
|
# Downloading and loading a dataset from the hub. |
||||
|
raw_datasets = load_dataset( |
||||
|
data_args.dataset_name, |
||||
|
data_args.dataset_config_name, |
||||
|
# cache_dir=model_args.cache_dir, |
||||
|
# use_auth_token=True if model_args.use_auth_token else None, |
||||
|
) |
||||
|
if "validation" not in raw_datasets.keys(): |
||||
|
raw_datasets["validation"] = load_dataset( |
||||
|
data_args.dataset_name, |
||||
|
data_args.dataset_config_name, |
||||
|
split=f"train[:{data_args.validation_split_percentage}%]", |
||||
|
# cache_dir=model_args.cache_dir, |
||||
|
# use_auth_token=True if model_args.use_auth_token else None, |
||||
|
) |
||||
|
raw_datasets["train"] = load_dataset( |
||||
|
data_args.dataset_name, |
||||
|
data_args.dataset_config_name, |
||||
|
split=f"train[{data_args.validation_split_percentage}%:]", |
||||
|
# cache_dir=model_args.cache_dir, |
||||
|
# use_auth_token=True if model_args.use_auth_token else None, |
||||
|
) |
||||
|
else: |
||||
|
data_files = {} |
||||
|
dataset_args = {} |
||||
|
if data_args.train_file is not None: |
||||
|
data_files["train"] = data_args.train_file |
||||
|
if data_args.validation_file is not None: |
||||
|
data_files["validation"] = data_args.validation_file |
||||
|
extension = ( |
||||
|
data_args.train_file.split(".")[-1] |
||||
|
if data_args.train_file is not None |
||||
|
else data_args.validation_file.split(".")[-1] |
||||
|
) |
||||
|
if extension == "txt": |
||||
|
extension = "text" |
||||
|
dataset_args["keep_linebreaks"] = data_args.keep_linebreaks |
||||
|
raw_datasets = load_dataset( |
||||
|
extension, |
||||
|
data_files=data_files, |
||||
|
# cache_dir=model_args.cache_dir, |
||||
|
# use_auth_token=True if model_args.use_auth_token else None, |
||||
|
**dataset_args, |
||||
|
) |
||||
|
# If no validation data is there, validation_split_percentage will be used to divide the dataset. |
||||
|
if "validation" not in raw_datasets.keys(): |
||||
|
raw_datasets["validation"] = load_dataset( |
||||
|
extension, |
||||
|
data_files=data_files, |
||||
|
split=f"train[:{data_args.validation_split_percentage}%]", |
||||
|
# cache_dir=model_args.cache_dir, |
||||
|
# use_auth_token=True if model_args.use_auth_token else None, |
||||
|
**dataset_args, |
||||
|
) |
||||
|
raw_datasets["train"] = load_dataset( |
||||
|
extension, |
||||
|
data_files=data_files, |
||||
|
split=f"train[{data_args.validation_split_percentage}%:]", |
||||
|
# cache_dir=model_args.cache_dir, |
||||
|
# use_auth_token=True if model_args.use_auth_token else None, |
||||
|
**dataset_args, |
||||
|
) |
||||
|
|
||||
|
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at |
||||
|
# https://huggingface.co/docs/datasets/loading_datasets.html. |
||||
|
|
||||
|
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch |
||||
|
# on a small vocab and want a smaller embedding size, remove this test. |
||||
|
embedding_size = model.get_input_embeddings().weight.shape[0] |
||||
|
if len(tokenizer) > embedding_size: |
||||
|
model.resize_token_embeddings(len(tokenizer)) |
||||
|
|
||||
|
# Preprocessing the datasets. |
||||
|
# First we tokenize all the texts. |
||||
|
if training_args.do_train: |
||||
|
column_names = raw_datasets["train"].column_names |
||||
|
else: |
||||
|
column_names = raw_datasets["validation"].column_names |
||||
|
text_column_name = "text" if "text" in column_names else column_names[0] |
||||
|
|
||||
|
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function |
||||
|
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base") |
||||
|
|
||||
|
def tokenize_function(examples): |
||||
|
with CaptureLogger(tok_logger) as cl: |
||||
|
output = tokenizer(examples[text_column_name]) |
||||
|
# clm input could be much much longer than block_size |
||||
|
if "Token indices sequence length is longer than the" in cl.out: |
||||
|
tok_logger.warning( |
||||
|
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits" |
||||
|
" before being passed to the model." |
||||
|
) |
||||
|
return output |
||||
|
|
||||
|
with training_args.main_process_first(desc="dataset map tokenization"): |
||||
|
tokenized_datasets = raw_datasets.map( |
||||
|
tokenize_function, |
||||
|
batched=True, |
||||
|
num_proc=data_args.preprocessing_num_workers, |
||||
|
remove_columns=column_names, |
||||
|
load_from_cache_file=not data_args.overwrite_cache, |
||||
|
desc="Running tokenizer on dataset", |
||||
|
) |
||||
|
|
||||
|
if data_args.block_size is None: |
||||
|
block_size = tokenizer.model_max_length |
||||
|
if block_size > 1024: |
||||
|
logger.warning( |
||||
|
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " |
||||
|
"Picking 1024 instead. You can change that default value by passing --block_size xxx." |
||||
|
) |
||||
|
block_size = 1024 |
||||
|
else: |
||||
|
if data_args.block_size > tokenizer.model_max_length: |
||||
|
logger.warning( |
||||
|
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model" |
||||
|
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." |
||||
|
) |
||||
|
block_size = min(data_args.block_size, tokenizer.model_max_length) |
||||
|
|
||||
|
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. |
||||
|
def group_texts(examples): |
||||
|
# Concatenate all texts. |
||||
|
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} |
||||
|
total_length = len(concatenated_examples[list(examples.keys())[0]]) |
||||
|
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can |
||||
|
# customize this part to your needs. |
||||
|
if total_length >= block_size: |
||||
|
total_length = (total_length // block_size) * block_size |
||||
|
# Split by chunks of max_len. |
||||
|
result = { |
||||
|
k: [t[i: i + block_size] for i in range(0, total_length, block_size)] |
||||
|
for k, t in concatenated_examples.items() |
||||
|
} |
||||
|
result["labels"] = result["input_ids"].copy() |
||||
|
return result # 2318 * 1024, dict(input_ids=[[token1, token2, ...token1024], ...], attention_mask=[[...], ....], labels=[[...],...]) |
||||
|
|
||||
|
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder |
||||
|
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower |
||||
|
# to preprocess. |
||||
|
# |
||||
|
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information: |
||||
|
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map |
||||
|
|
||||
|
with training_args.main_process_first(desc="grouping texts together"): |
||||
|
lm_datasets = tokenized_datasets.map( |
||||
|
group_texts, |
||||
|
batched=True, |
||||
|
num_proc=data_args.preprocessing_num_workers, |
||||
|
load_from_cache_file=not data_args.overwrite_cache, |
||||
|
desc=f"Grouping texts in chunks of {block_size}", |
||||
|
) |
||||
|
|
||||
|
if training_args.do_train: |
||||
|
if "train" not in tokenized_datasets: |
||||
|
raise ValueError("--do_train requires a train dataset") |
||||
|
train_dataset = lm_datasets["train"] |
||||
|
if data_args.max_train_samples is not None: |
||||
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples) |
||||
|
train_dataset = train_dataset.select(range(max_train_samples)) |
||||
|
|
||||
|
if training_args.do_eval: |
||||
|
if "validation" not in tokenized_datasets: |
||||
|
raise ValueError("--do_eval requires a validation dataset") |
||||
|
eval_dataset = lm_datasets["validation"] |
||||
|
if data_args.max_eval_samples is not None: |
||||
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) |
||||
|
eval_dataset = eval_dataset.select(range(max_eval_samples)) |
||||
|
|
||||
|
def preprocess_logits_for_metrics(logits, labels): |
||||
|
if isinstance(logits, tuple): |
||||
|
# Depending on the model and config, logits may contain extra tensors, |
||||
|
# like past_key_values, but logits always come first |
||||
|
logits = logits[0] |
||||
|
return logits.argmax(dim=-1) |
||||
|
|
||||
|
metric = evaluate.load("accuracy") |
||||
|
|
||||
|
def compute_metrics(eval_preds): |
||||
|
preds, labels = eval_preds |
||||
|
# preds have the same shape as the labels, after the argmax(-1) has been calculated |
||||
|
# by preprocess_logits_for_metrics but we need to shift the labels |
||||
|
labels = labels[:, 1:].reshape(-1) |
||||
|
preds = preds[:, :-1].reshape(-1) |
||||
|
return metric.compute(predictions=preds, references=labels) |
||||
|
|
||||
|
# Initialize our Trainer |
||||
|
trainer = Trainer( |
||||
|
model=model, |
||||
|
args=training_args, |
||||
|
train_dataset=train_dataset if training_args.do_train else None, |
||||
|
eval_dataset=eval_dataset if training_args.do_eval else None, |
||||
|
tokenizer=tokenizer, |
||||
|
# Data collator will default to DataCollatorWithPadding, so we change it. |
||||
|
data_collator=default_data_collator, |
||||
|
compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None, |
||||
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics |
||||
|
if training_args.do_eval and not is_torch_tpu_available() |
||||
|
else None, |
||||
|
) |
||||
|
|
||||
|
# Training |
||||
|
if training_args.do_train: |
||||
|
checkpoint = None |
||||
|
if training_args.resume_from_checkpoint is not None: |
||||
|
checkpoint = training_args.resume_from_checkpoint |
||||
|
elif last_checkpoint is not None: |
||||
|
checkpoint = last_checkpoint |
||||
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
||||
|
trainer.save_model() # Saves the tokenizer too for easy upload |
||||
|
metrics = train_result.metrics |
||||
|
|
||||
|
max_train_samples = ( |
||||
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) |
||||
|
) |
||||
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) |
||||
|
|
||||
|
trainer.log_metrics("train", metrics) |
||||
|
trainer.save_metrics("train", metrics) |
||||
|
trainer.save_state() |
||||
|
|
||||
|
# Evaluation |
||||
|
if training_args.do_eval: |
||||
|
logger.info("*** Evaluate ***") |
||||
|
|
||||
|
metrics = trainer.evaluate() |
||||
|
|
||||
|
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) |
||||
|
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) |
||||
|
try: |
||||
|
perplexity = math.exp(metrics["eval_loss"]) |
||||
|
except OverflowError: |
||||
|
perplexity = float("inf") |
||||
|
metrics["perplexity"] = perplexity |
||||
|
|
||||
|
trainer.log_metrics("eval", metrics) |
||||
|
trainer.save_metrics("eval", metrics) |
||||
|
|
||||
|
print('done clm.') |
@ -0,0 +1,458 @@ |
|||||
|
# This script is hacked and modified from https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py |
||||
|
# For more specified training tasks, please refer https://github.com/huggingface/transformers/tree/main/examples/pytorch |
||||
|
import dataclasses |
||||
|
import logging |
||||
|
import math |
||||
|
import os |
||||
|
import sys |
||||
|
from dataclasses import dataclass, field |
||||
|
from itertools import chain |
||||
|
from typing import Optional |
||||
|
|
||||
|
import transformers |
||||
|
from transformers import ( |
||||
|
MODEL_FOR_MASKED_LM_MAPPING, |
||||
|
DataCollatorForLanguageModeling, |
||||
|
TrainingArguments, |
||||
|
is_torch_tpu_available, |
||||
|
set_seed, |
||||
|
) |
||||
|
from transformers.trainer_utils import get_last_checkpoint |
||||
|
|
||||
|
logger = logging.getLogger(__name__) |
||||
|
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) |
||||
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) |
||||
|
|
||||
|
|
||||
|
def dataclass_from_dict(klass, d): |
||||
|
try: |
||||
|
fieldtypes = {f.name: f.type for f in dataclasses.fields(klass)} |
||||
|
return klass(**{f: dataclass_from_dict(fieldtypes[f], d[f]) for f in d}) |
||||
|
except: |
||||
|
return d # Not a dataclass field |
||||
|
|
||||
|
|
||||
|
@dataclass |
||||
|
class DataTrainingArguments: |
||||
|
""" |
||||
|
Arguments pertaining to what data we are going to input our model for training and eval. |
||||
|
""" |
||||
|
|
||||
|
dataset_name: Optional[str] = field( |
||||
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
||||
|
) |
||||
|
dataset_config_name: Optional[str] = field( |
||||
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
||||
|
) |
||||
|
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) |
||||
|
validation_file: Optional[str] = field( |
||||
|
default=None, |
||||
|
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, |
||||
|
) |
||||
|
overwrite_cache: bool = field( |
||||
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
||||
|
) |
||||
|
validation_split_percentage: Optional[int] = field( |
||||
|
default=5, |
||||
|
metadata={ |
||||
|
"help": "The percentage of the train set used as validation set in case there's no validation split" |
||||
|
}, |
||||
|
) |
||||
|
max_seq_length: Optional[int] = field( |
||||
|
default=None, |
||||
|
metadata={ |
||||
|
"help": ( |
||||
|
"The maximum total input sequence length after tokenization. Sequences longer " |
||||
|
"than this will be truncated." |
||||
|
) |
||||
|
}, |
||||
|
) |
||||
|
preprocessing_num_workers: Optional[int] = field( |
||||
|
default=None, |
||||
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
||||
|
) |
||||
|
mlm_probability: float = field( |
||||
|
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} |
||||
|
) |
||||
|
line_by_line: bool = field( |
||||
|
default=False, |
||||
|
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, |
||||
|
) |
||||
|
pad_to_max_length: bool = field( |
||||
|
default=False, |
||||
|
metadata={ |
||||
|
"help": ( |
||||
|
"Whether to pad all samples to `max_seq_length`. " |
||||
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch." |
||||
|
) |
||||
|
}, |
||||
|
) |
||||
|
max_train_samples: Optional[int] = field( |
||||
|
default=None, |
||||
|
metadata={ |
||||
|
"help": ( |
||||
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
||||
|
"value if set." |
||||
|
) |
||||
|
}, |
||||
|
) |
||||
|
max_eval_samples: Optional[int] = field( |
||||
|
default=None, |
||||
|
metadata={ |
||||
|
"help": ( |
||||
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
||||
|
"value if set." |
||||
|
) |
||||
|
}, |
||||
|
) |
||||
|
|
||||
|
def __post_init__(self): |
||||
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None: |
||||
|
raise ValueError("Need either a dataset name or a training/validation file.") |
||||
|
else: |
||||
|
if self.train_file is not None: |
||||
|
extension = self.train_file.split(".")[-1] |
||||
|
if extension not in ["csv", "json", "txt"]: |
||||
|
raise ValueError("`train_file` should be a csv, a json or a txt file.") |
||||
|
if self.validation_file is not None: |
||||
|
extension = self.validation_file.split(".")[-1] |
||||
|
if extension not in ["csv", "json", "txt"]: |
||||
|
raise ValueError("`validation_file` should be a csv, a json or a txt file.") |
||||
|
|
||||
|
|
||||
|
def train_mlm_with_hf_trainer(model, |
||||
|
tokenizer, |
||||
|
data_args, |
||||
|
training_args, |
||||
|
**kwargs): |
||||
|
import evaluate |
||||
|
import datasets |
||||
|
from transformers import Trainer |
||||
|
from datasets import load_dataset |
||||
|
from towhee.trainer.training_config import get_dataclasses_help |
||||
|
|
||||
|
print('train mlm with hugging face transformers trainer') |
||||
|
|
||||
|
print('**** DataTrainingArguments ****') |
||||
|
get_dataclasses_help(DataTrainingArguments) |
||||
|
data_args = dataclass_from_dict(DataTrainingArguments, data_args) |
||||
|
|
||||
|
print('**** TrainingArguments ****') |
||||
|
get_dataclasses_help(TrainingArguments) |
||||
|
training_args = dataclass_from_dict(TrainingArguments, training_args) |
||||
|
|
||||
|
# Setup logging |
||||
|
logging.basicConfig( |
||||
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
||||
|
datefmt="%m/%d/%Y %H:%M:%S", |
||||
|
handlers=[logging.StreamHandler(sys.stdout)], |
||||
|
) |
||||
|
|
||||
|
log_level = training_args.get_process_log_level() |
||||
|
logger.setLevel(log_level) |
||||
|
datasets.utils.logging.set_verbosity(log_level) |
||||
|
transformers.utils.logging.set_verbosity(log_level) |
||||
|
transformers.utils.logging.enable_default_handler() |
||||
|
transformers.utils.logging.enable_explicit_format() |
||||
|
|
||||
|
# Log on each process the small summary: |
||||
|
logger.warning( |
||||
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " |
||||
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
||||
|
) |
||||
|
# Set the verbosity to info of the Transformers logger (on main process only): |
||||
|
logger.info(f"Training/evaluation parameters {training_args}") |
||||
|
|
||||
|
# Detecting last checkpoint. |
||||
|
last_checkpoint = None |
||||
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
||||
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
||||
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
||||
|
raise ValueError( |
||||
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
||||
|
"Use --overwrite_output_dir to overcome." |
||||
|
) |
||||
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
||||
|
logger.info( |
||||
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
||||
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
||||
|
) |
||||
|
|
||||
|
# Set seed before initializing model. |
||||
|
set_seed(training_args.seed) |
||||
|
|
||||
|
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) |
||||
|
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ |
||||
|
# (the dataset will be downloaded automatically from the datasets Hub |
||||
|
# |
||||
|
# For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this |
||||
|
# behavior (see below) |
||||
|
# |
||||
|
# In distributed training, the load_dataset function guarantee that only one local process can concurrently |
||||
|
# download the dataset. |
||||
|
if data_args.dataset_name is not None: |
||||
|
# Downloading and loading a dataset from the hub. |
||||
|
raw_datasets = load_dataset( |
||||
|
data_args.dataset_name, |
||||
|
data_args.dataset_config_name, |
||||
|
# cache_dir=model_args.cache_dir, |
||||
|
# use_auth_token=True if model_args.use_auth_token else None, |
||||
|
) |
||||
|
if "validation" not in raw_datasets.keys(): |
||||
|
raw_datasets["validation"] = load_dataset( |
||||
|
data_args.dataset_name, |
||||
|
data_args.dataset_config_name, |
||||
|
split=f"train[:{data_args.validation_split_percentage}%]", |
||||
|
# cache_dir=model_args.cache_dir, |
||||
|
# use_auth_token=True if model_args.use_auth_token else None, |
||||
|
) |
||||
|
raw_datasets["train"] = load_dataset( |
||||
|
data_args.dataset_name, |
||||
|
data_args.dataset_config_name, |
||||
|
split=f"train[{data_args.validation_split_percentage}%:]", |
||||
|
# cache_dir=model_args.cache_dir, |
||||
|
# use_auth_token=True if model_args.use_auth_token else None, |
||||
|
) |
||||
|
else: |
||||
|
data_files = {} |
||||
|
if data_args.train_file is not None: |
||||
|
data_files["train"] = data_args.train_file |
||||
|
extension = data_args.train_file.split(".")[-1] |
||||
|
if data_args.validation_file is not None: |
||||
|
data_files["validation"] = data_args.validation_file |
||||
|
extension = data_args.validation_file.split(".")[-1] |
||||
|
if extension == "txt": |
||||
|
extension = "text" |
||||
|
raw_datasets = load_dataset( |
||||
|
extension, |
||||
|
data_files=data_files, |
||||
|
# cache_dir=model_args.cache_dir, |
||||
|
# use_auth_token=True if model_args.use_auth_token else None, |
||||
|
) |
||||
|
|
||||
|
# If no validation data is there, validation_split_percentage will be used to divide the dataset. |
||||
|
if "validation" not in raw_datasets.keys(): |
||||
|
raw_datasets["validation"] = load_dataset( |
||||
|
extension, |
||||
|
data_files=data_files, |
||||
|
split=f"train[:{data_args.validation_split_percentage}%]", |
||||
|
# cache_dir=model_args.cache_dir, |
||||
|
# use_auth_token=True if model_args.use_auth_token else None, |
||||
|
) |
||||
|
raw_datasets["train"] = load_dataset( |
||||
|
extension, |
||||
|
data_files=data_files, |
||||
|
split=f"train[{data_args.validation_split_percentage}%:]", |
||||
|
# cache_dir=model_args.cache_dir, |
||||
|
# use_auth_token=True if model_args.use_auth_token else None, |
||||
|
) |
||||
|
|
||||
|
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at |
||||
|
# https://huggingface.co/docs/datasets/loading_datasets.html. |
||||
|
|
||||
|
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch |
||||
|
# on a small vocab and want a smaller embedding size, remove this test. |
||||
|
embedding_size = model.get_input_embeddings().weight.shape[0] |
||||
|
if len(tokenizer) > embedding_size: |
||||
|
model.resize_token_embeddings(len(tokenizer)) |
||||
|
|
||||
|
# Preprocessing the datasets. |
||||
|
# First we tokenize all the texts. |
||||
|
if training_args.do_train: |
||||
|
column_names = raw_datasets["train"].column_names |
||||
|
else: |
||||
|
column_names = raw_datasets["validation"].column_names |
||||
|
text_column_name = "text" if "text" in column_names else column_names[0] |
||||
|
|
||||
|
if data_args.max_seq_length is None: |
||||
|
max_seq_length = tokenizer.model_max_length |
||||
|
if max_seq_length > 1024: |
||||
|
logger.warning( |
||||
|
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " |
||||
|
"Picking 1024 instead. You can change that default value by passing --max_seq_length xxx." |
||||
|
) |
||||
|
max_seq_length = 1024 |
||||
|
else: |
||||
|
if data_args.max_seq_length > tokenizer.model_max_length: |
||||
|
logger.warning( |
||||
|
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" |
||||
|
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." |
||||
|
) |
||||
|
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) |
||||
|
|
||||
|
if data_args.line_by_line: |
||||
|
# When using line_by_line, we just tokenize each nonempty line. |
||||
|
padding = "max_length" if data_args.pad_to_max_length else False |
||||
|
|
||||
|
def tokenize_function(examples): |
||||
|
# Remove empty lines |
||||
|
examples[text_column_name] = [ |
||||
|
line for line in examples[text_column_name] if len(line) > 0 and not line.isspace() |
||||
|
] |
||||
|
return tokenizer( |
||||
|
examples[text_column_name], |
||||
|
padding=padding, |
||||
|
truncation=True, |
||||
|
max_length=max_seq_length, |
||||
|
# We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it |
||||
|
# receives the `special_tokens_mask`. |
||||
|
return_special_tokens_mask=True, |
||||
|
) |
||||
|
|
||||
|
with training_args.main_process_first(desc="dataset map tokenization"): |
||||
|
tokenized_datasets = raw_datasets.map( |
||||
|
tokenize_function, |
||||
|
batched=True, |
||||
|
num_proc=data_args.preprocessing_num_workers, |
||||
|
remove_columns=[text_column_name], |
||||
|
load_from_cache_file=not data_args.overwrite_cache, |
||||
|
desc="Running tokenizer on dataset line_by_line", |
||||
|
) |
||||
|
else: |
||||
|
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts. |
||||
|
# We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more |
||||
|
# efficient when it receives the `special_tokens_mask`. |
||||
|
def tokenize_function(examples): |
||||
|
return tokenizer(examples[text_column_name], return_special_tokens_mask=True) |
||||
|
|
||||
|
with training_args.main_process_first(desc="dataset map tokenization"): |
||||
|
tokenized_datasets = raw_datasets.map( |
||||
|
tokenize_function, |
||||
|
batched=True, |
||||
|
num_proc=data_args.preprocessing_num_workers, |
||||
|
remove_columns=column_names, |
||||
|
load_from_cache_file=not data_args.overwrite_cache, |
||||
|
desc="Running tokenizer on every text in dataset", |
||||
|
) |
||||
|
|
||||
|
# Main data processing function that will concatenate all texts from our dataset and generate chunks of |
||||
|
# max_seq_length. |
||||
|
def group_texts(examples): # examples: 1000 * (about 50~500) = total_length |
||||
|
# Concatenate all texts. |
||||
|
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} |
||||
|
total_length = len(concatenated_examples[list(examples.keys())[0]]) |
||||
|
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can |
||||
|
# customize this part to your needs. |
||||
|
if total_length >= max_seq_length: # max_seq_length = 512 |
||||
|
total_length = (total_length // max_seq_length) * max_seq_length |
||||
|
# Split by chunks of max_len. |
||||
|
result = { |
||||
|
k: [t[i: i + max_seq_length] for i in range(0, total_length, max_seq_length)] |
||||
|
for k, t in concatenated_examples.items() |
||||
|
} |
||||
|
return result # 573 * 512 = 293376 = total_length, dict(input_ids=[[token1, token2, ...token512], ...], token_type_ids=[[...],...], attention_mask=[[...],...], special_tkens_mask=[[...],...]) |
||||
|
|
||||
|
|
||||
|
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a |
||||
|
# remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value |
||||
|
# might be slower to preprocess. |
||||
|
# |
||||
|
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information: |
||||
|
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map |
||||
|
|
||||
|
with training_args.main_process_first(desc="grouping texts together"): |
||||
|
tokenized_datasets = tokenized_datasets.map( |
||||
|
group_texts, |
||||
|
batched=True, |
||||
|
num_proc=data_args.preprocessing_num_workers, |
||||
|
load_from_cache_file=not data_args.overwrite_cache, |
||||
|
desc=f"Grouping texts in chunks of {max_seq_length}", |
||||
|
) |
||||
|
|
||||
|
if training_args.do_train: |
||||
|
if "train" not in tokenized_datasets: |
||||
|
raise ValueError("--do_train requires a train dataset") |
||||
|
train_dataset = tokenized_datasets["train"] |
||||
|
if data_args.max_train_samples is not None: |
||||
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples) |
||||
|
train_dataset = train_dataset.select(range(max_train_samples)) |
||||
|
|
||||
|
if training_args.do_eval: |
||||
|
if "validation" not in tokenized_datasets: |
||||
|
raise ValueError("--do_eval requires a validation dataset") |
||||
|
eval_dataset = tokenized_datasets["validation"] |
||||
|
if data_args.max_eval_samples is not None: |
||||
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) |
||||
|
eval_dataset = eval_dataset.select(range(max_eval_samples)) |
||||
|
|
||||
|
def preprocess_logits_for_metrics(logits, labels): |
||||
|
if isinstance(logits, tuple): |
||||
|
# Depending on the model and config, logits may contain extra tensors, |
||||
|
# like past_key_values, but logits always come first |
||||
|
logits = logits[0] |
||||
|
return logits.argmax(dim=-1) |
||||
|
|
||||
|
metric = evaluate.load("accuracy") |
||||
|
|
||||
|
def compute_metrics(eval_preds): |
||||
|
preds, labels = eval_preds |
||||
|
# preds have the same shape as the labels, after the argmax(-1) has been calculated |
||||
|
# by preprocess_logits_for_metrics |
||||
|
labels = labels.reshape(-1) |
||||
|
preds = preds.reshape(-1) |
||||
|
mask = labels != -100 |
||||
|
labels = labels[mask] |
||||
|
preds = preds[mask] |
||||
|
return metric.compute(predictions=preds, references=labels) |
||||
|
|
||||
|
# Data collator |
||||
|
# This one will take care of randomly masking the tokens. |
||||
|
pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length |
||||
|
data_collator = DataCollatorForLanguageModeling( |
||||
|
tokenizer=tokenizer, |
||||
|
mlm_probability=data_args.mlm_probability, |
||||
|
pad_to_multiple_of=8 if pad_to_multiple_of_8 else None, |
||||
|
) |
||||
|
|
||||
|
# Initialize our Trainer |
||||
|
trainer = Trainer( |
||||
|
model=model, |
||||
|
args=training_args, |
||||
|
train_dataset=train_dataset if training_args.do_train else None, |
||||
|
eval_dataset=eval_dataset if training_args.do_eval else None, |
||||
|
tokenizer=tokenizer, |
||||
|
data_collator=data_collator, |
||||
|
compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None, |
||||
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics |
||||
|
if training_args.do_eval and not is_torch_tpu_available() |
||||
|
else None, |
||||
|
) |
||||
|
|
||||
|
# Training |
||||
|
if training_args.do_train: |
||||
|
checkpoint = None |
||||
|
if training_args.resume_from_checkpoint is not None: |
||||
|
checkpoint = training_args.resume_from_checkpoint |
||||
|
elif last_checkpoint is not None: |
||||
|
checkpoint = last_checkpoint |
||||
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
||||
|
trainer.save_model() # Saves the tokenizer too for easy upload |
||||
|
metrics = train_result.metrics |
||||
|
|
||||
|
max_train_samples = ( |
||||
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) |
||||
|
) |
||||
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) |
||||
|
|
||||
|
trainer.log_metrics("train", metrics) |
||||
|
trainer.save_metrics("train", metrics) |
||||
|
trainer.save_state() |
||||
|
|
||||
|
# Evaluation |
||||
|
if training_args.do_eval: |
||||
|
logger.info("*** Evaluate ***") |
||||
|
|
||||
|
metrics = trainer.evaluate() |
||||
|
|
||||
|
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) |
||||
|
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) |
||||
|
try: |
||||
|
perplexity = math.exp(metrics["eval_loss"]) |
||||
|
except OverflowError: |
||||
|
perplexity = float("inf") |
||||
|
metrics["perplexity"] = perplexity |
||||
|
|
||||
|
trainer.log_metrics("eval", metrics) |
||||
|
trainer.save_metrics("eval", metrics) |
||||
|
|
||||
|
print('done mlm.') |
Loading…
Reference in new issue