logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

64 lines
2.1 KiB

3 years ago
import numpy
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer
from towhee import register
from towhee.operator import NNOperator
import warnings
import logging
3 years ago
warnings.filterwarnings('ignore')
logging.getLogger("transformers").setLevel(logging.ERROR)
3 years ago
log = logging.getLogger()
@register(output_schema=['vec'])
class Dpr(NNOperator):
3 years ago
"""
This class uses Dense Passage Retrieval to generate embedding.
Dense Passage Retrieval (DPR) is a set of tools and models for state-of-the-art open-domain Q&A research.
It was introduced in Dense Passage Retrieval for Open-Domain Question Answering by Vladimir Karpukhin,
Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih.
Ref: https://huggingface.co/docs/transformers/v4.16.2/en/model_doc/dpr
Args:
model_name (`str`):
Which model to use for the embeddings.
"""
def __init__(self, model_name: str = "facebook/dpr-ctx_encoder-single-nq-base") -> None:
3 years ago
self.model_name = model_name
try:
self.tokenizer = DPRContextEncoderTokenizer.from_pretrained(model_name)
except Exception as e:
log.error(f'Fail to load tokenizer by name: {model_name}')
raise e
try:
self.model = DPRContextEncoder.from_pretrained(model_name)
except Exception as e:
log.error(f'Fail to load model by name: {model_name}')
raise e
def __call__(self, txt: str) -> numpy.ndarray:
try:
input_ids = self.tokenizer(txt, return_tensors="pt")["input_ids"]
except Exception as e:
log.error(f'Invalid input for the tokenizer: {self.model_name}')
raise e
try:
embeddings = self.model(input_ids).pooler_output
except Exception as e:
log.error(f'Invalid input for the model: {self.model_name}')
raise e
vec = embeddings.detach().numpy()
return vec
def get_model_list():
full_list = [
"facebook/dpr-ctx_encoder-single-nq-base",
"facebook/dpr-ctx_encoder-multiset-base",
]
full_list.sort()
return full_list