logo
Browse Source

Update README

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
main
Jael Gu 3 years ago
parent
commit
3ee542df3e
  1. 21
      README.md

21
README.md

@ -2,7 +2,7 @@
*author: Kyle He*
<br />
## Desription
@ -23,12 +23,14 @@ where embeddings are learned from a small number of questions and passages by a
[2].https://arxiv.org/abs/2004.04906
<br />
## Code Example
Use the pretrained model "facebook/dpr-ctx_encoder-single-nq-base"
to generate a text embedding for the sentence "Hello, world.".
*Write the pipeline*:
*Write the pipeline*:
```python
from towhee import dc
@ -39,6 +41,7 @@ dc.stream(["Hello, world."]) \
.to_list()
```
<br />
## Factory Constructor
@ -48,12 +51,13 @@ Create the operator via the following factory method
**Parameters:**
***model_name***: *str*
***model_name***: *str*
The model name in string.
The model name in string.
The default value is "facebook/dpr-ctx_encoder-single-nq-base".
You can get the list of supported model names by calling `get_model_list` from [dpr.py](https://towhee.io/text-embedding/dpr/src/branch/main/dpr.py).
<br />
## Interface
@ -63,14 +67,13 @@ and then return text embedding in ndarray.
**Parameters:**
***text***: *str*
​ The text in string.
***text***: *str*
The text in string.
**Returns**:
*numpy.ndarray*
*numpy.ndarray*
The text embedding extracted by model.
The text embedding extracted by model.
Loading…
Cancel
Save