The default value is "facebook/dpr-ctx_encoder-single-nq-base".
You can get the list of supported model names by calling `get_model_list` from [auto_transformers.py](https://towhee.io/text-embedding/transformers/src/branch/main/auto_transformers.py).
**Returns**: *numpy.ndarray*
The text embedding extracted by model.
## Interface
The operator takes a text in string as input.
It loads tokenizer and pre-trained model using model name.
and then return text embedding in ndarray.
**Parameters:**
## Code Example
***text***: *str*
Use the pretrained model ('allenai/longformer-base-4096')
to generate a text embedding for the sentence "Hello, world.".
The text in string.
*Write the pipeline in simplified style*:
```python
import towhee.DataCollection as dc
dc.glob("Hello, world.")
.text_embedding.dpr('longformer-base-4096')
.show()
```
*Write a same pipeline with explicit inputs/outputs name specifications:*