longformer
copied
4 changed files with 148 additions and 1 deletions
@ -1,2 +1,85 @@ |
|||
# longformer |
|||
# Text Embedding with longformer |
|||
|
|||
*author: Kyle He* |
|||
|
|||
|
|||
|
|||
## Desription |
|||
|
|||
This operator uses Longformer to convert long text to embeddings. |
|||
|
|||
The Longformer model was presented in Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan[1]. |
|||
|
|||
**Longformer** models were proposed in “[Longformer: The Long-Document Transformer][2]. |
|||
|
|||
Transformer-based models are unable to process long sequences due to their self-attention |
|||
operation, which scales quadratically with the sequence length. To address this limitation, |
|||
we introduce the Longformer with an attention mechanism that scales linearly with sequence |
|||
length, making it easy to process documents of thousands of tokens or longer[2]. |
|||
|
|||
## Reference |
|||
|
|||
[1].https://huggingface.co/docs/transformers/v4.16.2/en/model_doc/longformer#transformers.LongformerConfig |
|||
|
|||
[2].https://arxiv.org/pdf/2004.05150.pdf |
|||
|
|||
```python |
|||
from towhee import ops |
|||
|
|||
text_encoder = ops.text_embedding.longformer(model_name="allenai/longformer-base-4096") |
|||
text_embedding = text_encoder("Hello, world.") |
|||
``` |
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method |
|||
|
|||
***ops.text_embedding.longformer(model_name)*** |
|||
|
|||
|
|||
|
|||
## Interface |
|||
|
|||
A text embedding operator takes a sentence, paragraph, or document in string as an input |
|||
and output an embedding vector in ndarray which captures the input's core semantic elements. |
|||
|
|||
|
|||
**Parameters:** |
|||
|
|||
***text***: *str* |
|||
|
|||
The text in string. |
|||
|
|||
|
|||
|
|||
**Returns**: *numpy.ndarray* |
|||
|
|||
The text embedding extracted by model. |
|||
|
|||
|
|||
|
|||
## Code Example |
|||
|
|||
Use the pretrained model ('allenai/longformer-base-4096') |
|||
to generate a text embedding for the sentence "Hello, world.". |
|||
|
|||
*Write the pipeline in simplified style*: |
|||
|
|||
```python |
|||
import towhee.DataCollection as dc |
|||
|
|||
dc.glob("Hello, world.") |
|||
.text_embedding.longformer('longformer-base-4096') |
|||
.show() |
|||
``` |
|||
|
|||
*Write a same pipeline with explicit inputs/outputs name specifications:* |
|||
|
|||
```python |
|||
from towhee import DataCollection as dc |
|||
|
|||
dc.glob['text']('Hello, world.') |
|||
.text_embedding.longformer['text', 'vec']('longformer-base-4096') |
|||
.select('vec') |
|||
.show() |
|||
``` |
|||
|
@ -0,0 +1,60 @@ |
|||
import numpy |
|||
from typing import NamedTuple |
|||
import torch |
|||
from transformers import LongformerTokenizer, LongformerModel |
|||
import logging |
|||
|
|||
from towhee.operator import NNOperator |
|||
from towhee import register |
|||
|
|||
|
|||
import warnings |
|||
warnings.filterwarnings('ignore') |
|||
log = logging.getLogger() |
|||
|
|||
|
|||
@register(output_schema=['vec']) |
|||
class LongformerEmbedding(NNOperator): |
|||
""" |
|||
NLP embedding operator that uses the pretrained longformer model gathered by huggingface. |
|||
The Longformer model was presented in Longformer: The Long-Document Transformer by Iz Beltagy, |
|||
Matthew E. Peters, Arman Cohan. |
|||
Ref: https://huggingface.co/docs/transformers/v4.16.2/en/model_doc/longformer#transformers.LongformerConfig |
|||
|
|||
Args: |
|||
model_name (`str`): |
|||
Which model to use for the embeddings. |
|||
""" |
|||
def __init__(self, model_name: str) -> None: |
|||
super().__init__() |
|||
self.model_name = model_name |
|||
try: |
|||
self.model = LongformerModel.from_pretrained(model_name) |
|||
except Exception as e: |
|||
log.error(f'Fail to load model by name: {model_name}') |
|||
raise e |
|||
try: |
|||
self.tokenizer = LongformerTokenizer.from_pretrained(model_name) |
|||
except Exception as e: |
|||
log.error(f'Fail to load tokenizer by name: {model_name}') |
|||
raise e |
|||
|
|||
def __call__(self, txt: str) -> numpy.ndarray: |
|||
try: |
|||
input_ids = torch.tensor(self.tokenizer.encode(txt)).unsqueeze(0) |
|||
except Exception as e: |
|||
log.error(f'Invalid input for the tokenizer: {self.model_name}') |
|||
raise e |
|||
try: |
|||
attention_mask = None |
|||
outs = self.model(input_ids, attention_mask=attention_mask, labels=input_ids, output_hidden_states=True) |
|||
except Exception as e: |
|||
log.error(f'Invalid input for the model: {self.model_name}') |
|||
raise e |
|||
try: |
|||
feature_vector = outs[1].squeeze() |
|||
except Exception as e: |
|||
log.error(f'Fail to extract features by model: {self.model_name}') |
|||
raise e |
|||
feature_vector = feature_vector.detach().numpy() |
|||
return feature_vector |
@ -0,0 +1,4 @@ |
|||
numpy |
|||
transformers |
|||
sentencepiece |
|||
protobuf |
Loading…
Reference in new issue