longformer
copied
4 changed files with 148 additions and 1 deletions
@ -1,2 +1,85 @@ |
|||||
# longformer |
|
||||
|
# Text Embedding with longformer |
||||
|
|
||||
|
*author: Kyle He* |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Desription |
||||
|
|
||||
|
This operator uses Longformer to convert long text to embeddings. |
||||
|
|
||||
|
The Longformer model was presented in Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan[1]. |
||||
|
|
||||
|
**Longformer** models were proposed in “[Longformer: The Long-Document Transformer][2]. |
||||
|
|
||||
|
Transformer-based models are unable to process long sequences due to their self-attention |
||||
|
operation, which scales quadratically with the sequence length. To address this limitation, |
||||
|
we introduce the Longformer with an attention mechanism that scales linearly with sequence |
||||
|
length, making it easy to process documents of thousands of tokens or longer[2]. |
||||
|
|
||||
|
## Reference |
||||
|
|
||||
|
[1].https://huggingface.co/docs/transformers/v4.16.2/en/model_doc/longformer#transformers.LongformerConfig |
||||
|
|
||||
|
[2].https://arxiv.org/pdf/2004.05150.pdf |
||||
|
|
||||
|
```python |
||||
|
from towhee import ops |
||||
|
|
||||
|
text_encoder = ops.text_embedding.longformer(model_name="allenai/longformer-base-4096") |
||||
|
text_embedding = text_encoder("Hello, world.") |
||||
|
``` |
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method |
||||
|
|
||||
|
***ops.text_embedding.longformer(model_name)*** |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
A text embedding operator takes a sentence, paragraph, or document in string as an input |
||||
|
and output an embedding vector in ndarray which captures the input's core semantic elements. |
||||
|
|
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***text***: *str* |
||||
|
|
||||
|
The text in string. |
||||
|
|
||||
|
|
||||
|
|
||||
|
**Returns**: *numpy.ndarray* |
||||
|
|
||||
|
The text embedding extracted by model. |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Code Example |
||||
|
|
||||
|
Use the pretrained model ('allenai/longformer-base-4096') |
||||
|
to generate a text embedding for the sentence "Hello, world.". |
||||
|
|
||||
|
*Write the pipeline in simplified style*: |
||||
|
|
||||
|
```python |
||||
|
import towhee.DataCollection as dc |
||||
|
|
||||
|
dc.glob("Hello, world.") |
||||
|
.text_embedding.longformer('longformer-base-4096') |
||||
|
.show() |
||||
|
``` |
||||
|
|
||||
|
*Write a same pipeline with explicit inputs/outputs name specifications:* |
||||
|
|
||||
|
```python |
||||
|
from towhee import DataCollection as dc |
||||
|
|
||||
|
dc.glob['text']('Hello, world.') |
||||
|
.text_embedding.longformer['text', 'vec']('longformer-base-4096') |
||||
|
.select('vec') |
||||
|
.show() |
||||
|
``` |
||||
|
@ -0,0 +1,60 @@ |
|||||
|
import numpy |
||||
|
from typing import NamedTuple |
||||
|
import torch |
||||
|
from transformers import LongformerTokenizer, LongformerModel |
||||
|
import logging |
||||
|
|
||||
|
from towhee.operator import NNOperator |
||||
|
from towhee import register |
||||
|
|
||||
|
|
||||
|
import warnings |
||||
|
warnings.filterwarnings('ignore') |
||||
|
log = logging.getLogger() |
||||
|
|
||||
|
|
||||
|
@register(output_schema=['vec']) |
||||
|
class LongformerEmbedding(NNOperator): |
||||
|
""" |
||||
|
NLP embedding operator that uses the pretrained longformer model gathered by huggingface. |
||||
|
The Longformer model was presented in Longformer: The Long-Document Transformer by Iz Beltagy, |
||||
|
Matthew E. Peters, Arman Cohan. |
||||
|
Ref: https://huggingface.co/docs/transformers/v4.16.2/en/model_doc/longformer#transformers.LongformerConfig |
||||
|
|
||||
|
Args: |
||||
|
model_name (`str`): |
||||
|
Which model to use for the embeddings. |
||||
|
""" |
||||
|
def __init__(self, model_name: str) -> None: |
||||
|
super().__init__() |
||||
|
self.model_name = model_name |
||||
|
try: |
||||
|
self.model = LongformerModel.from_pretrained(model_name) |
||||
|
except Exception as e: |
||||
|
log.error(f'Fail to load model by name: {model_name}') |
||||
|
raise e |
||||
|
try: |
||||
|
self.tokenizer = LongformerTokenizer.from_pretrained(model_name) |
||||
|
except Exception as e: |
||||
|
log.error(f'Fail to load tokenizer by name: {model_name}') |
||||
|
raise e |
||||
|
|
||||
|
def __call__(self, txt: str) -> numpy.ndarray: |
||||
|
try: |
||||
|
input_ids = torch.tensor(self.tokenizer.encode(txt)).unsqueeze(0) |
||||
|
except Exception as e: |
||||
|
log.error(f'Invalid input for the tokenizer: {self.model_name}') |
||||
|
raise e |
||||
|
try: |
||||
|
attention_mask = None |
||||
|
outs = self.model(input_ids, attention_mask=attention_mask, labels=input_ids, output_hidden_states=True) |
||||
|
except Exception as e: |
||||
|
log.error(f'Invalid input for the model: {self.model_name}') |
||||
|
raise e |
||||
|
try: |
||||
|
feature_vector = outs[1].squeeze() |
||||
|
except Exception as e: |
||||
|
log.error(f'Fail to extract features by model: {self.model_name}') |
||||
|
raise e |
||||
|
feature_vector = feature_vector.detach().numpy() |
||||
|
return feature_vector |
@ -0,0 +1,4 @@ |
|||||
|
numpy |
||||
|
transformers |
||||
|
sentencepiece |
||||
|
protobuf |
Loading…
Reference in new issue