logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

80 lines
2.5 KiB

from auto_transformers import AutoTransformers
import numpy
import onnx
import onnxruntime
from pathlib import Path
import warnings
import logging
# full_models = AutoTransformers.supported_model_names()
# checked_models = AutoTransformers.supported_model_names(format='onnx')
# models = [x for x in full_models if x not in checked_models]
models = ['distilbert-base-cased']
warnings.filterwarnings('ignore')
log_path = './transformers_onnx.log'
logger = logging.getLogger()
if Path(log_path).exists:
handler = logging.FileHandler(log_path)
else:
handler = logging.StreamHandler()
logger.handlers.append(handler)
logging.basicConfig(filename=log_path,
filemode='a',
format='%(asctime)s, %(msecs)d %(name)s %(levelname)s %(message)s',
datefmt='%H:%M:%S',
level=logging.info)
logging.info("Test")
for name in models:
print(f'Model {name}:')
saved_name = name.replace('/', '-')
logging.info(f'\nConverting model {name} to {saved_name}:')
try:
op = AutoTransformers(model_name=name)
out1 = op('hello, world.')
logging.info('OP LOADED.')
except Exception as e:
logging.error(f'FAIL TO LOAD OP: {e}')
continue
try:
op.save_model(format='onnx')
logging.info('ONNX SAVED.')
except Exception as e:
logging.info(f'FAIL TO SAVE ONNX: {e}')
continue
try:
try:
onnx_model = onnx.load(f'saved/onnx/{saved_name}.onnx')
onnx.checker.check_model(onnx_model)
except Exception:
saved_onnx = onnx.load(f'saved/onnx/{saved_name}.onnx', load_external_data=False)
onnx.checker.check_model(saved_onnx)
logging.info('ONNX CHECKED.')
except Exception as e:
logging.error(f'FAIL TO CHECK ONNX: {e}')
continue
try:
sess = onnxruntime.InferenceSession(f'saved/onnx/{saved_name}.onnx',
providers=onnxruntime.get_available_providers())
inputs = op.tokenizer('hello, world.', return_tensors='np')
out2 = sess.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
logging.info('ONNX WORKED.')
if numpy.allclose(out1, out2, atol=1e-3):
logging.info('Check accuracy: OK')
else:
logging.info('Check accuracy: atol is larger than 1e-3.')
except Exception as e:
logging.error(f'FAIL TO RUN ONNX: {e}')
continue
print('Finished.')