|
@ -404,7 +404,7 @@ class AutoTransformers(NNOperator): |
|
|
if task == 'mlm' or task is None: |
|
|
if task == 'mlm' or task is None: |
|
|
model_with_head = AutoModelForMaskedLM.from_pretrained(self.model_name) |
|
|
model_with_head = AutoModelForMaskedLM.from_pretrained(self.model_name) |
|
|
if prepare_model_weights_f is not None: |
|
|
if prepare_model_weights_f is not None: |
|
|
model_with_head = prepare_model_weights_f(self.model, model_with_head, **kwargs) |
|
|
model_with_head = prepare_model_weights_f(self._model, model_with_head, **kwargs) |
|
|
|
|
|
|
|
|
train_mlm_with_hf_trainer( |
|
|
train_mlm_with_hf_trainer( |
|
|
model_with_head, |
|
|
model_with_head, |
|
@ -416,7 +416,7 @@ class AutoTransformers(NNOperator): |
|
|
elif task == 'clm': |
|
|
elif task == 'clm': |
|
|
model_with_head = AutoModelForCausalLM.from_pretrained(self.model_name) |
|
|
model_with_head = AutoModelForCausalLM.from_pretrained(self.model_name) |
|
|
if prepare_model_weights_f is not None: |
|
|
if prepare_model_weights_f is not None: |
|
|
model_with_head = prepare_model_weights_f(self.model, model_with_head, **kwargs) |
|
|
model_with_head = prepare_model_weights_f(self._model, model_with_head, **kwargs) |
|
|
|
|
|
|
|
|
train_clm_with_hf_trainer( |
|
|
train_clm_with_hf_trainer( |
|
|
model_with_head, |
|
|
model_with_head, |
|
|