copied
Readme
Files and versions
Updated 2 years ago
text-embedding
Text Embedding with Transformers
author: Jael Gu
Description
A text embedding operator takes a sentence, paragraph, or document in string as an input and output an embedding vector in ndarray which captures the input's core semantic elements. This operator is implemented with pre-trained models from Huggingface Transformers.
Code Example
Use the pre-trained model 'distilbert-base-cased' to generate a text embedding for the sentence "Hello, world.".
Write a same pipeline with explicit inputs/outputs name specifications:
- option 1 (towhee>=0.9.0):
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('text')
.map('text', 'vec', ops.text_embedding.transformers(model_name='distilbert-base-cased'))
.output('text', 'vec')
)
DataCollection(p('Hello, world.')).show()
- option 2:
import towhee
(
towhee.dc['text'](["Hello, world."])
.text_embedding.transformers['text', 'vec'](model_name="distilbert-base-cased")
.show()
)
Factory Constructor
Create the operator via the following factory method:
text_embedding.transformers(model_name=None)
Parameters:
model_name: str
The model name in string, defaults to None. If None, the operator will be initialized without specified model.
Supported model names:
Albert
- albert-base-v1
- albert-large-v1
- albert-xlarge-v1
- albert-xxlarge-v1
- albert-base-v2
- albert-large-v2
- albert-xlarge-v2
- albert-xxlarge-v2
Bart
- facebook/bart-large
Bert
- bert-base-cased
- bert-base-uncased
- bert-large-cased
- bert-large-uncased
- bert-base-multilingual-uncased
- bert-base-multilingual-cased
- bert-base-chinese
- bert-base-german-cased
- bert-large-uncased-whole-word-masking
- bert-large-cased-whole-word-masking
- bert-large-uncased-whole-word-masking-finetuned-squad
- bert-large-cased-whole-word-masking-finetuned-squad
- bert-base-cased-finetuned-mrpc
- bert-base-german-dbmdz-cased
- bert-base-german-dbmdz-uncased
- cl-tohoku/bert-base-japanese-whole-word-masking
- cl-tohoku/bert-base-japanese-char
- cl-tohoku/bert-base-japanese-char-whole-word-masking
- TurkuNLP/bert-base-finnish-cased-v1
- TurkuNLP/bert-base-finnish-uncased-v1
- wietsedv/bert-base-dutch-cased
BertGeneration
- google/bert_for_seq_generation_L-24_bbc_encoder
BigBird
- google/bigbird-roberta-base
- google/bigbird-roberta-large
- google/bigbird-base-trivia-itc
BigBirdPegasus
- google/bigbird-pegasus-large-arxiv
- google/bigbird-pegasus-large-pubmed
- google/bigbird-pegasus-large-bigpatent
CamemBert
- camembert-base
- Musixmatch/umberto-commoncrawl-cased-v1
- Musixmatch/umberto-wikipedia-uncased-v1
Canine
- google/canine-s
- google/canine-c
Convbert
- YituTech/conv-bert-base
- YituTech/conv-bert-medium-small
- YituTech/conv-bert-small
CTRL
- ctrlDeBERTa
- microsoft/deberta-base
- microsoft/deberta-large
- microsoft/deberta-xlarge
- microsoft/deberta-base-mnli
- microsoft/deberta-large-mnli
- microsoft/deberta-xlarge-mnli
- microsoft/deberta-v2-xlarge
- microsoft/deberta-v2-xxlarge
- microsoft/deberta-v2-xlarge-mnli
- microsoft/deberta-v2-xxlarge-mnli
DistilBert
- distilbert-base-uncased
- distilbert-base-uncased-distilled-squad
- distilbert-base-cased
- distilbert-base-cased-distilled-squad
- distilbert-base-german-cased
- distilbert-base-multilingual-cased
- distilbert-base-uncased-finetuned-sst-2-english
Electral
- google/electra-small-generator
- google/electra-base-generator
- google/electra-large-generator
- google/electra-small-discriminator
- google/electra-base-discriminator
- google/electra-large-discriminator
Flaubert
- flaubert/flaubert_small_cased
- flaubert/flaubert_base_uncased
- flaubert/flaubert_base_cased
- flaubert/flaubert_large_cased
FNet
- google/fnet-base
- google/fnet-large
FSMT
- facebook/wmt19-ru-en
Funnel
- funnel-transformer/small
- funnel-transformer/small-base
- funnel-transformer/medium
- funnel-transformer/medium-base
- funnel-transformer/intermediate
- funnel-transformer/intermediate-base
- funnel-transformer/large
- funnel-transformer/large-base
- funnel-transformer/xlarge-base
- funnel-transformer/xlarge
GPT
- openai-gpt
- gpt2
- gpt2-medium
- gpt2-large
- gpt2-xl
- distilgpt2
- EleutherAI/gpt-neo-1.3B
- EleutherAI/gpt-j-6B
I-Bert
- kssteven/ibert-roberta-base
LED
- allenai/led-base-16384
MobileBert
- google/mobilebert-uncased
MPNet
- microsoft/mpnet-base
Nystromformer
- uw-madison/nystromformer-512
Reformer
- google/reformer-crime-and-punishment
Splinter
- tau/splinter-base
- tau/splinter-base-qass
- tau/splinter-large
- tau/splinter-large-qass
SqueezeBert
- squeezebert/squeezebert-uncased
- squeezebert/squeezebert-mnli
- squeezebert/squeezebert-mnli-headless
TransfoXL
- transfo-xl-wt103
XLM
- xlm-mlm-en-2048
- xlm-mlm-ende-1024
- xlm-mlm-enfr-1024
- xlm-mlm-enro-1024
- xlm-mlm-tlm-xnli15-1024
- xlm-mlm-xnli15-1024
- xlm-clm-enfr-1024
- xlm-clm-ende-1024
- xlm-mlm-17-1280
- xlm-mlm-100-1280
XLMRoberta
- xlm-roberta-base
- xlm-roberta-large
- xlm-roberta-large-finetuned-conll02-dutch
- xlm-roberta-large-finetuned-conll02-spanish
- xlm-roberta-large-finetuned-conll03-english
- xlm-roberta-large-finetuned-conll03-german
XLNet
- xlnet-base-cased
- xlnet-large-cased
Yoso
- uw-madison/yoso-4096
checkpoint_path: str
The path to local checkpoint, defaults to None.
If None, the operator will download and load pretrained model by model_name
from Huggingface transformers.
tokenizer: object
The method to tokenize input text, defaults to None.
If None, the operator will use default tokenizer by model_name
from Huggingface transformers.
return_sentence_emb: bool
The flag to output a sentence embedding for each text, defaults to True. If False, the operator returns token embeddings for each text.
Interface
The operator takes a piece of text in string as input. It loads tokenizer and pre-trained model using model name. and then return text embedding in ndarray.
__call__(txt)
Parameters:
data: Union[str, list]
The text in string or a list of texts. If data is string, the operator returns embedding(s) in ndarray. If data is a list, the operator returns embedding(s) in a list.
Returns:
numpy.ndarray
The text embedding extracted by model.
save_model(format='pytorch', path='default')
Save model to local with specified format.
Parameters:
format: str
The format of saved model, defaults to 'pytorch'.
path: str
The path where model is saved to. By default, it will save model to the operator directory.
from towhee import ops
op = ops.text_embedding.transformers(model_name='distilbert-base-cased').get_op()
op.save_model('onnx', 'test.onnx')
PosixPath('/Home/.towhee/operators/text-embedding/transformers/main/test.onnx')
supported_model_names(format=None)
Get a list of all supported model names or supported model names for specified model format.
Parameters:
format: str
The model format such as 'pytorch', 'torchscript'.
from towhee import ops
op = ops.text_embedding.transformers().get_op()
full_list = op.supported_model_names()
onnx_list = op.supported_model_names(format='onnx')
print(f'Onnx-support/Total Models: {len(onnx_list)}/{len(full_list)}')
2022-12-13 16:25:15,916 - 140704500614336 - auto_transformers.py-auto_transformers:68 - WARNING: The operator is initialized without specified model.
Onnx-support/Total Models: 111/126
Fine-tune
Requirement
If you want to train this operator, besides dependency in requirements.txt, you need install these dependencies.
! python -m pip install datasets evaluate scikit-learn
Get start
We have prepared some most typical use of finetune examples.
Simply speaking, you only need to construct an op instance and pass in some configurations to train the specified task.
import towhee
bert_op = towhee.ops.text_embedding.transformers(model_name='bert-base-uncased').get_op()
data_args = {
'dataset_name': 'wikitext',
'dataset_config_name': 'wikitext-2-raw-v1',
}
training_args = {
'num_train_epochs': 3, # you can add epoch number to get a better metric.
'per_device_train_batch_size': 8,
'per_device_eval_batch_size': 8,
'do_train': True,
'do_eval': True,
'output_dir': './tmp/test-mlm',
'overwrite_output_dir': True
}
bert_op.train(task='mlm', data_args=data_args, training_args=training_args)
For more infos, refer to the examples.
Dive deep and customize your training
You can change the training script in your customer way. Or your can refer to the original hugging face transformers training examples.
Jael Gu
0485da7399
| 87 Commits | ||
---|---|---|---|
benchmark | 2 years ago | ||
.gitattributes |
1.1 KiB
|
3 years ago | |
README.md |
10 KiB
|
2 years ago | |
__init__.py |
709 B
|
3 years ago | |
auto_transformers.py |
18 KiB
|
2 years ago | |
requirements.txt |
56 B
|
2 years ago | |
result.png |
5.8 KiB
|
3 years ago | |
test_onnx.py |
3.3 KiB
|
2 years ago | |
test_onnx2.py |
5.7 KiB
|
2 years ago | |
test_torchscript.py |
1.1 KiB
|
3 years ago | |
train_clm_with_hf_trainer.py |
18 KiB
|
2 years ago | |
train_mlm_with_hf_trainer.py |
20 KiB
|
2 years ago |