This pipeline extracts features of a given audio file using a VGGish model implemented in Tensorflow. This is a supervised model pre-trained with [AudioSet](https://research.google.com/audioset/), which contains over 2 million sound clips.
This pipeline extracts features of a given audio file using a VGGish model implemented in Pytorch. This is a supervised model pre-trained with [AudioSet](https://research.google.com/audioset/), which contains over 2 million sound clips.
## Interface
## Interface
@ -44,4 +44,4 @@ $ pip3 install towhee
## How it works
## How it works
This pipeline includes a main operator: [audio embedding](https://hub.towhee.io/towhee/audio-embedding-operator-template) (implemented as [towhee/tf-vggish-audioset](https://hub.towhee.io/towhee/tf-vggish-audioset)). The audio embedding operator encodes fixed-length clips of an audio data and finally output a set of vectors of the given audio.
This pipeline includes a main operator: [audio-embedding](https://towhee.io/operators?limit=30&page=1&filter=3%3Aaudio-embedding) (default: [towhee/torch-vggish](https://hub.towhee.io/towhee/torch-vggish)). The audio embedding operator encodes audio file and finally output a set of vectors of the given audio.