logo
Browse Source

Update readme

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
main
Jael Gu 3 years ago
parent
commit
fadc1cd66d
  1. 13
      README.md

13
README.md

@ -13,15 +13,18 @@ This pipeline extracts features of a given audio file using a VGGish model imple
- audio_path:
- the input audio in `.wav`
- supported types: `str` (path to the audio)
- the audio should be as least 1 second
**Pipeline Output:**
The Operator returns a tuple `Tuple[('embs', numpy.ndarray)]` containing following fields:
The Operator returns a list of named tuple `[NamedTuple('AudioOutput', [('vec', 'ndarray')])]` containing following fields:
- embs:
- each item in the output list represents for embedding(s) for an audio clip, which depends on `time-window` in [yaml](./audio_embedding_vggish.yaml).
- vec:
- embeddings of input audio
- data type: numpy.ndarray
- shape: (num_clips,128)
- shape: (num_clips, 128)
## How to use
@ -39,9 +42,9 @@ $ pip3 install towhee
>>> from towhee import pipeline
>>> embedding_pipeline = pipeline('towhee/audio-embedding-vggish')
>>> embedding = embedding_pipeline('path/to/your/audio')
>>> embedding = embedding_pipeline('/path/to/your/audio')
```
## How it works
This pipeline includes a main operator: [audio-embedding](https://towhee.io/operators?limit=30&page=1&filter=3%3Aaudio-embedding) (default: [towhee/torch-vggish](https://hub.towhee.io/towhee/torch-vggish)). The audio embedding operator encodes audio file and finally output a set of vectors of the given audio.
This pipeline includes a main operator type [audio-embedding](https://towhee.io/operators?limit=30&page=1&filter=3%3Aaudio-embedding) (default: [towhee/torch-vggish](https://hub.towhee.io/towhee/torch-vggish)). The pipeline first decodes the input audio file into audio frames and then combine frames depending on time-window configs. The audio-embedding operator takes combined frames as input and generate corresponding audio embeddings.

Loading…
Cancel
Save