logo
clip
repo-copy-icon

copied

Browse Source

update clip.

Signed-off-by: wxywb <xy.wang@zilliz.com>
main
wxywb 3 years ago
parent
commit
3dc67453f0
  1. 23
      __init__.py
  2. 38
      clip.py
  3. 4
      clip_impl.py
  4. 0
      clip_model.py

23
__init__.py

@ -1 +1,22 @@
from .clip import *
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .clip import Clip
def dolg(img_size=512, input_dim=3, hidden_dim=1024, output_dim=2048):
return Dolg(img_size, input_dim, hidden_dim, output_dim)
def clip(name: str, modality: str):
return Clip(name, modality)

38
clip.py

@ -12,42 +12,50 @@
# See the License for the specific language governing permissions and
# limitations under the License.
@register(output_schema=['vec'])
import numpy
import towhee
import sys
from pathlib import Path
import torch
from torchvision import transforms
from towhee.types.image_utils import to_pil
from towhee.types.image_utils import to_pil
from towhee.operator.base import NNOperator, OperatorFlag
from towhee.types.arg import arg, to_image_color
from towhee import register
@register(output_schema=['vec'])
class Clip(NNOperator):
"""
CLIP multi-modal embedding operator
"""
def __init__(self, modality: str):
self._modality = modality
def __init__(self, name: str, modality: str):
sys.path.append(str(Path(__file__).parent))
#from clip_impl import load
import clip_impl
self.modality = modality
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self._model, self.preprocess = clip_impl.load(name, self.device)
self.tokenize = clip_impl.tokenize
def __call__(self, data):
if self._modality == 'image'
emb = self._inference_from_image(data)
elif self._modality == 'text'
emb = self._inference_from_text(data)
else
if self.modality == 'image':
vec = self._inference_from_image(data)
elif self.modality == 'text':
vec = self._inference_from_text(data)
else:
raise ValueError("modality[{}] not implemented.".format(self._modality))
return vec
def _inference_from_text(self, text):
return text
text = self.tokenize(text).to(self.device)
text_features = self._model.encode_text(text)
return text_features
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):
return img
image = self.preprocess(to_pil(img)).unsqueeze(0).to(self.device)
image_features = self._model.encode_image(image)
return image_features

4
clip_impl.py

@ -10,8 +10,8 @@ from PIL import Image
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
from tqdm import tqdm
from .model import build_model
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
from clip_model import build_model
from simple_tokenizer import SimpleTokenizer as _Tokenizer
try:
from torchvision.transforms import InterpolationMode

0
model.py → clip_model.py

Loading…
Cancel
Save