7 changed files with 33 additions and 836 deletions
			
			
		
								
									Binary file not shown.
								
							
						
					| @ -1,236 +0,0 @@ | |||||
| import hashlib |  | ||||
| import os |  | ||||
| import urllib |  | ||||
| import warnings |  | ||||
| from typing import Any, Union, List |  | ||||
| from pkg_resources import packaging |  | ||||
| 
 |  | ||||
| import torch |  | ||||
| from PIL import Image |  | ||||
| from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize |  | ||||
| from tqdm import tqdm |  | ||||
| 
 |  | ||||
| from clip_model import build_model |  | ||||
| from simple_tokenizer import SimpleTokenizer as _Tokenizer |  | ||||
| 
 |  | ||||
| try: |  | ||||
|     from torchvision.transforms import InterpolationMode |  | ||||
|     BICUBIC = InterpolationMode.BICUBIC |  | ||||
| except ImportError: |  | ||||
|     BICUBIC = Image.BICUBIC |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"): |  | ||||
|     warnings.warn("PyTorch version 1.7.1 or higher is recommended") |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| __all__ = ["available_models", "load", "tokenize"] |  | ||||
| _tokenizer = _Tokenizer() |  | ||||
| 
 |  | ||||
| _MODELS = { |  | ||||
|     "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", |  | ||||
|     "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", |  | ||||
|     "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", |  | ||||
|     "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", |  | ||||
|     "RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt", |  | ||||
|     "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", |  | ||||
|     "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", |  | ||||
|     "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", |  | ||||
| } |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| def _download(url: str, root: str): |  | ||||
|     os.makedirs(root, exist_ok=True) |  | ||||
|     filename = os.path.basename(url) |  | ||||
| 
 |  | ||||
|     expected_sha256 = url.split("/")[-2] |  | ||||
|     download_target = os.path.join(root, filename) |  | ||||
| 
 |  | ||||
|     if os.path.exists(download_target) and not os.path.isfile(download_target): |  | ||||
|         raise RuntimeError(f"{download_target} exists and is not a regular file") |  | ||||
| 
 |  | ||||
|     if os.path.isfile(download_target): |  | ||||
|         if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: |  | ||||
|             return download_target |  | ||||
|         else: |  | ||||
|             warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") |  | ||||
| 
 |  | ||||
|     with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: |  | ||||
|         with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: |  | ||||
|             while True: |  | ||||
|                 buffer = source.read(8192) |  | ||||
|                 if not buffer: |  | ||||
|                     break |  | ||||
| 
 |  | ||||
|                 output.write(buffer) |  | ||||
|                 loop.update(len(buffer)) |  | ||||
| 
 |  | ||||
|     if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: |  | ||||
|         raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") |  | ||||
| 
 |  | ||||
|     return download_target |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| def _convert_image_to_rgb(image): |  | ||||
|     return image.convert("RGB") |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| def _transform(n_px): |  | ||||
|     return Compose([ |  | ||||
|         Resize(n_px, interpolation=BICUBIC), |  | ||||
|         CenterCrop(n_px), |  | ||||
|         _convert_image_to_rgb, |  | ||||
|         ToTensor(), |  | ||||
|         Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), |  | ||||
|     ]) |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| def available_models() -> List[str]: |  | ||||
|     """Returns the names of available CLIP models""" |  | ||||
|     return list(_MODELS.keys()) |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None): |  | ||||
|     """Load a CLIP model |  | ||||
| 
 |  | ||||
|     Parameters |  | ||||
|     ---------- |  | ||||
|     name : str |  | ||||
|         A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict |  | ||||
| 
 |  | ||||
|     device : Union[str, torch.device] |  | ||||
|         The device to put the loaded model |  | ||||
| 
 |  | ||||
|     jit : bool |  | ||||
|         Whether to load the optimized JIT model or more hackable non-JIT model (default). |  | ||||
| 
 |  | ||||
|     download_root: str |  | ||||
|         path to download the model files; by default, it uses "~/.cache/clip" |  | ||||
| 
 |  | ||||
|     Returns |  | ||||
|     ------- |  | ||||
|     model : torch.nn.Module |  | ||||
|         The CLIP model |  | ||||
| 
 |  | ||||
|     preprocess : Callable[[PIL.Image], torch.Tensor] |  | ||||
|         A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input |  | ||||
|     """ |  | ||||
|     if name in _MODELS: |  | ||||
|         model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")) |  | ||||
|     elif os.path.isfile(name): |  | ||||
|         model_path = name |  | ||||
|     else: |  | ||||
|         raise RuntimeError(f"Model {name} not found; available models = {available_models()}") |  | ||||
| 
 |  | ||||
|     with open(model_path, 'rb') as opened_file: |  | ||||
|         try: |  | ||||
|             # loading JIT archive |  | ||||
|             model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval() |  | ||||
|             state_dict = None |  | ||||
|         except RuntimeError: |  | ||||
|             # loading saved state dict |  | ||||
|             if jit: |  | ||||
|                 warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") |  | ||||
|                 jit = False |  | ||||
|             state_dict = torch.load(opened_file, map_location="cpu") |  | ||||
| 
 |  | ||||
|     if not jit: |  | ||||
|         model = build_model(state_dict or model.state_dict()).to(device) |  | ||||
|         if str(device) == "cpu": |  | ||||
|             model.float() |  | ||||
|         return model, _transform(model.visual.input_resolution) |  | ||||
| 
 |  | ||||
|     # patch the device names |  | ||||
|     device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) |  | ||||
|     device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] |  | ||||
| 
 |  | ||||
|     def patch_device(module): |  | ||||
|         try: |  | ||||
|             graphs = [module.graph] if hasattr(module, "graph") else [] |  | ||||
|         except RuntimeError: |  | ||||
|             graphs = [] |  | ||||
| 
 |  | ||||
|         if hasattr(module, "forward1"): |  | ||||
|             graphs.append(module.forward1.graph) |  | ||||
| 
 |  | ||||
|         for graph in graphs: |  | ||||
|             for node in graph.findAllNodes("prim::Constant"): |  | ||||
|                 if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): |  | ||||
|                     node.copyAttributes(device_node) |  | ||||
| 
 |  | ||||
|     model.apply(patch_device) |  | ||||
|     patch_device(model.encode_image) |  | ||||
|     patch_device(model.encode_text) |  | ||||
| 
 |  | ||||
|     # patch dtype to float32 on CPU |  | ||||
|     if str(device) == "cpu": |  | ||||
|         float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) |  | ||||
|         float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] |  | ||||
|         float_node = float_input.node() |  | ||||
| 
 |  | ||||
|         def patch_float(module): |  | ||||
|             try: |  | ||||
|                 graphs = [module.graph] if hasattr(module, "graph") else [] |  | ||||
|             except RuntimeError: |  | ||||
|                 graphs = [] |  | ||||
| 
 |  | ||||
|             if hasattr(module, "forward1"): |  | ||||
|                 graphs.append(module.forward1.graph) |  | ||||
| 
 |  | ||||
|             for graph in graphs: |  | ||||
|                 for node in graph.findAllNodes("aten::to"): |  | ||||
|                     inputs = list(node.inputs()) |  | ||||
|                     for i in [1, 2]:  # dtype can be the second or third argument to aten::to() |  | ||||
|                         if inputs[i].node()["value"] == 5: |  | ||||
|                             inputs[i].node().copyAttributes(float_node) |  | ||||
| 
 |  | ||||
|         model.apply(patch_float) |  | ||||
|         patch_float(model.encode_image) |  | ||||
|         patch_float(model.encode_text) |  | ||||
| 
 |  | ||||
|         model.float() |  | ||||
| 
 |  | ||||
|     return model, _transform(model.input_resolution.item()) |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]: |  | ||||
|     """ |  | ||||
|     Returns the tokenized representation of given input string(s) |  | ||||
| 
 |  | ||||
|     Parameters |  | ||||
|     ---------- |  | ||||
|     texts : Union[str, List[str]] |  | ||||
|         An input string or a list of input strings to tokenize |  | ||||
| 
 |  | ||||
|     context_length : int |  | ||||
|         The context length to use; all CLIP models use 77 as the context length |  | ||||
| 
 |  | ||||
|     truncate: bool |  | ||||
|         Whether to truncate the text in case its encoding is longer than the context length |  | ||||
| 
 |  | ||||
|     Returns |  | ||||
|     ------- |  | ||||
|     A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]. |  | ||||
|     We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long. |  | ||||
|     """ |  | ||||
|     if isinstance(texts, str): |  | ||||
|         texts = [texts] |  | ||||
| 
 |  | ||||
|     sot_token = _tokenizer.encoder["<|startoftext|>"] |  | ||||
|     eot_token = _tokenizer.encoder["<|endoftext|>"] |  | ||||
|     all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] |  | ||||
|     if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"): |  | ||||
|         result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) |  | ||||
|     else: |  | ||||
|         result = torch.zeros(len(all_tokens), context_length, dtype=torch.int) |  | ||||
| 
 |  | ||||
|     for i, tokens in enumerate(all_tokens): |  | ||||
|         if len(tokens) > context_length: |  | ||||
|             if truncate: |  | ||||
|                 tokens = tokens[:context_length] |  | ||||
|                 tokens[-1] = eot_token |  | ||||
|             else: |  | ||||
|                 raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") |  | ||||
|         result[i, :len(tokens)] = torch.tensor(tokens) |  | ||||
| 
 |  | ||||
|     return result |  | ||||
| @ -1,432 +0,0 @@ | |||||
| from collections import OrderedDict |  | ||||
| from typing import Tuple, Union |  | ||||
| 
 |  | ||||
| import numpy as np |  | ||||
| import torch |  | ||||
| import torch.nn.functional as F |  | ||||
| from torch import nn |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| class Bottleneck(nn.Module): |  | ||||
|     expansion = 4 |  | ||||
| 
 |  | ||||
|     def __init__(self, inplanes, planes, stride=1): |  | ||||
|         super().__init__() |  | ||||
| 
 |  | ||||
|         # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 |  | ||||
|         self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) |  | ||||
|         self.bn1 = nn.BatchNorm2d(planes) |  | ||||
| 
 |  | ||||
|         self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) |  | ||||
|         self.bn2 = nn.BatchNorm2d(planes) |  | ||||
| 
 |  | ||||
|         self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() |  | ||||
| 
 |  | ||||
|         self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) |  | ||||
|         self.bn3 = nn.BatchNorm2d(planes * self.expansion) |  | ||||
| 
 |  | ||||
|         self.relu = nn.ReLU(inplace=True) |  | ||||
|         self.downsample = None |  | ||||
|         self.stride = stride |  | ||||
| 
 |  | ||||
|         if stride > 1 or inplanes != planes * Bottleneck.expansion: |  | ||||
|             # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 |  | ||||
|             self.downsample = nn.Sequential(OrderedDict([ |  | ||||
|                 ("-1", nn.AvgPool2d(stride)), |  | ||||
|                 ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), |  | ||||
|                 ("1", nn.BatchNorm2d(planes * self.expansion)) |  | ||||
|             ])) |  | ||||
| 
 |  | ||||
|     def forward(self, x: torch.Tensor): |  | ||||
|         identity = x |  | ||||
| 
 |  | ||||
|         out = self.relu(self.bn1(self.conv1(x))) |  | ||||
|         out = self.relu(self.bn2(self.conv2(out))) |  | ||||
|         out = self.avgpool(out) |  | ||||
|         out = self.bn3(self.conv3(out)) |  | ||||
| 
 |  | ||||
|         if self.downsample is not None: |  | ||||
|             identity = self.downsample(x) |  | ||||
| 
 |  | ||||
|         out += identity |  | ||||
|         out = self.relu(out) |  | ||||
|         return out |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| class AttentionPool2d(nn.Module): |  | ||||
|     def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): |  | ||||
|         super().__init__() |  | ||||
|         self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) |  | ||||
|         self.k_proj = nn.Linear(embed_dim, embed_dim) |  | ||||
|         self.q_proj = nn.Linear(embed_dim, embed_dim) |  | ||||
|         self.v_proj = nn.Linear(embed_dim, embed_dim) |  | ||||
|         self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) |  | ||||
|         self.num_heads = num_heads |  | ||||
| 
 |  | ||||
|     def forward(self, x): |  | ||||
|         x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1)  # NCHW -> (HW)NC |  | ||||
|         x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0)  # (HW+1)NC |  | ||||
|         x = x + self.positional_embedding[:, None, :].to(x.dtype)  # (HW+1)NC |  | ||||
|         x, _ = F.multi_head_attention_forward( |  | ||||
|             query=x, key=x, value=x, |  | ||||
|             embed_dim_to_check=x.shape[-1], |  | ||||
|             num_heads=self.num_heads, |  | ||||
|             q_proj_weight=self.q_proj.weight, |  | ||||
|             k_proj_weight=self.k_proj.weight, |  | ||||
|             v_proj_weight=self.v_proj.weight, |  | ||||
|             in_proj_weight=None, |  | ||||
|             in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), |  | ||||
|             bias_k=None, |  | ||||
|             bias_v=None, |  | ||||
|             add_zero_attn=False, |  | ||||
|             dropout_p=0, |  | ||||
|             out_proj_weight=self.c_proj.weight, |  | ||||
|             out_proj_bias=self.c_proj.bias, |  | ||||
|             use_separate_proj_weight=True, |  | ||||
|             training=self.training, |  | ||||
|             need_weights=False |  | ||||
|         ) |  | ||||
| 
 |  | ||||
|         return x[0] |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| class ModifiedResNet(nn.Module): |  | ||||
|     """ |  | ||||
|     A ResNet class that is similar to torchvision's but contains the following changes: |  | ||||
|     - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. |  | ||||
|     - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 |  | ||||
|     - The final pooling layer is a QKV attention instead of an average pool |  | ||||
|     """ |  | ||||
| 
 |  | ||||
|     def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): |  | ||||
|         super().__init__() |  | ||||
|         self.output_dim = output_dim |  | ||||
|         self.input_resolution = input_resolution |  | ||||
| 
 |  | ||||
|         # the 3-layer stem |  | ||||
|         self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) |  | ||||
|         self.bn1 = nn.BatchNorm2d(width // 2) |  | ||||
|         self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) |  | ||||
|         self.bn2 = nn.BatchNorm2d(width // 2) |  | ||||
|         self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) |  | ||||
|         self.bn3 = nn.BatchNorm2d(width) |  | ||||
|         self.avgpool = nn.AvgPool2d(2) |  | ||||
|         self.relu = nn.ReLU(inplace=True) |  | ||||
| 
 |  | ||||
|         # residual layers |  | ||||
|         self._inplanes = width  # this is a *mutable* variable used during construction |  | ||||
|         self.layer1 = self._make_layer(width, layers[0]) |  | ||||
|         self.layer2 = self._make_layer(width * 2, layers[1], stride=2) |  | ||||
|         self.layer3 = self._make_layer(width * 4, layers[2], stride=2) |  | ||||
|         self.layer4 = self._make_layer(width * 8, layers[3], stride=2) |  | ||||
| 
 |  | ||||
|         embed_dim = width * 32  # the ResNet feature dimension |  | ||||
|         self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) |  | ||||
| 
 |  | ||||
|     def _make_layer(self, planes, blocks, stride=1): |  | ||||
|         layers = [Bottleneck(self._inplanes, planes, stride)] |  | ||||
| 
 |  | ||||
|         self._inplanes = planes * Bottleneck.expansion |  | ||||
|         for _ in range(1, blocks): |  | ||||
|             layers.append(Bottleneck(self._inplanes, planes)) |  | ||||
| 
 |  | ||||
|         return nn.Sequential(*layers) |  | ||||
| 
 |  | ||||
|     def forward(self, x): |  | ||||
|         def stem(x): |  | ||||
|             for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: |  | ||||
|                 x = self.relu(bn(conv(x))) |  | ||||
|             x = self.avgpool(x) |  | ||||
|             return x |  | ||||
| 
 |  | ||||
|         x = x.type(self.conv1.weight.dtype) |  | ||||
|         x = stem(x) |  | ||||
|         x = self.layer1(x) |  | ||||
|         x = self.layer2(x) |  | ||||
|         x = self.layer3(x) |  | ||||
|         x = self.layer4(x) |  | ||||
|         x = self.attnpool(x) |  | ||||
| 
 |  | ||||
|         return x |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| class LayerNorm(nn.LayerNorm): |  | ||||
|     """Subclass torch's LayerNorm to handle fp16.""" |  | ||||
| 
 |  | ||||
|     def forward(self, x: torch.Tensor): |  | ||||
|         orig_type = x.dtype |  | ||||
|         ret = super().forward(x.type(torch.float32)) |  | ||||
|         return ret.type(orig_type) |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| class QuickGELU(nn.Module): |  | ||||
|     def forward(self, x: torch.Tensor): |  | ||||
|         return x * torch.sigmoid(1.702 * x) |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| class ResidualAttentionBlock(nn.Module): |  | ||||
|     def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): |  | ||||
|         super().__init__() |  | ||||
| 
 |  | ||||
|         self.attn = nn.MultiheadAttention(d_model, n_head) |  | ||||
|         self.ln_1 = LayerNorm(d_model) |  | ||||
|         self.mlp = nn.Sequential(OrderedDict([ |  | ||||
|             ("c_fc", nn.Linear(d_model, d_model * 4)), |  | ||||
|             ("gelu", QuickGELU()), |  | ||||
|             ("c_proj", nn.Linear(d_model * 4, d_model)) |  | ||||
|         ])) |  | ||||
|         self.ln_2 = LayerNorm(d_model) |  | ||||
|         self.attn_mask = attn_mask |  | ||||
| 
 |  | ||||
|     def attention(self, x: torch.Tensor): |  | ||||
|         self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None |  | ||||
|         return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] |  | ||||
| 
 |  | ||||
|     def forward(self, x: torch.Tensor): |  | ||||
|         x = x + self.attention(self.ln_1(x)) |  | ||||
|         x = x + self.mlp(self.ln_2(x)) |  | ||||
|         return x |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| class Transformer(nn.Module): |  | ||||
|     def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): |  | ||||
|         super().__init__() |  | ||||
|         self.width = width |  | ||||
|         self.layers = layers |  | ||||
|         self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) |  | ||||
| 
 |  | ||||
|     def forward(self, x: torch.Tensor): |  | ||||
|         return self.resblocks(x) |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| class VisionTransformer(nn.Module): |  | ||||
|     def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): |  | ||||
|         super().__init__() |  | ||||
|         self.input_resolution = input_resolution |  | ||||
|         self.output_dim = output_dim |  | ||||
|         self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) |  | ||||
| 
 |  | ||||
|         scale = width ** -0.5 |  | ||||
|         self.class_embedding = nn.Parameter(scale * torch.randn(width)) |  | ||||
|         self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) |  | ||||
|         self.ln_pre = LayerNorm(width) |  | ||||
| 
 |  | ||||
|         self.transformer = Transformer(width, layers, heads) |  | ||||
| 
 |  | ||||
|         self.ln_post = LayerNorm(width) |  | ||||
|         self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) |  | ||||
| 
 |  | ||||
|     def forward(self, x: torch.Tensor): |  | ||||
|         x = self.conv1(x)  # shape = [*, width, grid, grid] |  | ||||
|         x = x.reshape(x.shape[0], x.shape[1], -1)  # shape = [*, width, grid ** 2] |  | ||||
|         x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width] |  | ||||
|         x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1)  # shape = [*, grid ** 2 + 1, width] |  | ||||
|         x = x + self.positional_embedding.to(x.dtype) |  | ||||
|         x = self.ln_pre(x) |  | ||||
| 
 |  | ||||
|         x = x.permute(1, 0, 2)  # NLD -> LND |  | ||||
|         x = self.transformer(x) |  | ||||
|         x = x.permute(1, 0, 2)  # LND -> NLD |  | ||||
| 
 |  | ||||
|         x = self.ln_post(x[:, 0, :]) |  | ||||
| 
 |  | ||||
|         if self.proj is not None: |  | ||||
|             x = x @ self.proj |  | ||||
| 
 |  | ||||
|         return x |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| class CLIP(nn.Module): |  | ||||
|     def __init__(self, |  | ||||
|                  embed_dim: int, |  | ||||
|                  # vision |  | ||||
|                  image_resolution: int, |  | ||||
|                  vision_layers: Union[Tuple[int, int, int, int], int], |  | ||||
|                  vision_width: int, |  | ||||
|                  vision_patch_size: int, |  | ||||
|                  # text |  | ||||
|                  context_length: int, |  | ||||
|                  vocab_size: int, |  | ||||
|                  transformer_width: int, |  | ||||
|                  transformer_heads: int, |  | ||||
|                  transformer_layers: int |  | ||||
|                  ): |  | ||||
|         super().__init__() |  | ||||
| 
 |  | ||||
|         self.context_length = context_length |  | ||||
| 
 |  | ||||
|         if isinstance(vision_layers, (tuple, list)): |  | ||||
|             vision_heads = vision_width * 32 // 64 |  | ||||
|             self.visual = ModifiedResNet( |  | ||||
|                 layers=vision_layers, |  | ||||
|                 output_dim=embed_dim, |  | ||||
|                 heads=vision_heads, |  | ||||
|                 input_resolution=image_resolution, |  | ||||
|                 width=vision_width |  | ||||
|             ) |  | ||||
|         else: |  | ||||
|             vision_heads = vision_width // 64 |  | ||||
|             self.visual = VisionTransformer( |  | ||||
|                 input_resolution=image_resolution, |  | ||||
|                 patch_size=vision_patch_size, |  | ||||
|                 width=vision_width, |  | ||||
|                 layers=vision_layers, |  | ||||
|                 heads=vision_heads, |  | ||||
|                 output_dim=embed_dim |  | ||||
|             ) |  | ||||
| 
 |  | ||||
|         self.transformer = Transformer( |  | ||||
|             width=transformer_width, |  | ||||
|             layers=transformer_layers, |  | ||||
|             heads=transformer_heads, |  | ||||
|             attn_mask=self.build_attention_mask() |  | ||||
|         ) |  | ||||
| 
 |  | ||||
|         self.vocab_size = vocab_size |  | ||||
|         self.token_embedding = nn.Embedding(vocab_size, transformer_width) |  | ||||
|         self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) |  | ||||
|         self.ln_final = LayerNorm(transformer_width) |  | ||||
| 
 |  | ||||
|         self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) |  | ||||
|         self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) |  | ||||
| 
 |  | ||||
|         self.initialize_parameters() |  | ||||
| 
 |  | ||||
|     def initialize_parameters(self): |  | ||||
|         nn.init.normal_(self.token_embedding.weight, std=0.02) |  | ||||
|         nn.init.normal_(self.positional_embedding, std=0.01) |  | ||||
| 
 |  | ||||
|         if isinstance(self.visual, ModifiedResNet): |  | ||||
|             if self.visual.attnpool is not None: |  | ||||
|                 std = self.visual.attnpool.c_proj.in_features ** -0.5 |  | ||||
|                 nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) |  | ||||
|                 nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) |  | ||||
|                 nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) |  | ||||
|                 nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) |  | ||||
| 
 |  | ||||
|             for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: |  | ||||
|                 for name, param in resnet_block.named_parameters(): |  | ||||
|                     if name.endswith("bn3.weight"): |  | ||||
|                         nn.init.zeros_(param) |  | ||||
| 
 |  | ||||
|         proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) |  | ||||
|         attn_std = self.transformer.width ** -0.5 |  | ||||
|         fc_std = (2 * self.transformer.width) ** -0.5 |  | ||||
|         for block in self.transformer.resblocks: |  | ||||
|             nn.init.normal_(block.attn.in_proj_weight, std=attn_std) |  | ||||
|             nn.init.normal_(block.attn.out_proj.weight, std=proj_std) |  | ||||
|             nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) |  | ||||
|             nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) |  | ||||
| 
 |  | ||||
|         if self.text_projection is not None: |  | ||||
|             nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) |  | ||||
| 
 |  | ||||
|     def build_attention_mask(self): |  | ||||
|         # lazily create causal attention mask, with full attention between the vision tokens |  | ||||
|         # pytorch uses additive attention mask; fill with -inf |  | ||||
|         mask = torch.empty(self.context_length, self.context_length) |  | ||||
|         mask.fill_(float("-inf")) |  | ||||
|         mask.triu_(1)  # zero out the lower diagonal |  | ||||
|         return mask |  | ||||
| 
 |  | ||||
|     @property |  | ||||
|     def dtype(self): |  | ||||
|         return self.visual.conv1.weight.dtype |  | ||||
| 
 |  | ||||
|     def encode_image(self, image): |  | ||||
|         return self.visual(image.type(self.dtype)) |  | ||||
| 
 |  | ||||
|     def encode_text(self, text): |  | ||||
|         x = self.token_embedding(text).type(self.dtype)  # [batch_size, n_ctx, d_model] |  | ||||
| 
 |  | ||||
|         x = x + self.positional_embedding.type(self.dtype) |  | ||||
|         x = x.permute(1, 0, 2)  # NLD -> LND |  | ||||
|         x = self.transformer(x) |  | ||||
|         x = x.permute(1, 0, 2)  # LND -> NLD |  | ||||
|         x = self.ln_final(x).type(self.dtype) |  | ||||
| 
 |  | ||||
|         # x.shape = [batch_size, n_ctx, transformer.width] |  | ||||
|         # take features from the eot embedding (eot_token is the highest number in each sequence) |  | ||||
|         x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection |  | ||||
| 
 |  | ||||
|         return x |  | ||||
| 
 |  | ||||
|     def forward(self, image, text): |  | ||||
|         image_features = self.encode_image(image) |  | ||||
|         text_features = self.encode_text(text) |  | ||||
| 
 |  | ||||
|         # normalized features |  | ||||
|         image_features = image_features / image_features.norm(dim=1, keepdim=True) |  | ||||
|         text_features = text_features / text_features.norm(dim=1, keepdim=True) |  | ||||
| 
 |  | ||||
|         # cosine similarity as logits |  | ||||
|         logit_scale = self.logit_scale.exp() |  | ||||
|         logits_per_image = logit_scale * image_features @ text_features.t() |  | ||||
|         logits_per_text = logits_per_image.t() |  | ||||
| 
 |  | ||||
|         # shape = [global_batch_size, global_batch_size] |  | ||||
|         return logits_per_image, logits_per_text |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| def convert_weights(model: nn.Module): |  | ||||
|     """Convert applicable model parameters to fp16""" |  | ||||
| 
 |  | ||||
|     def _convert_weights_to_fp16(l): |  | ||||
|         if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): |  | ||||
|             l.weight.data = l.weight.data.half() |  | ||||
|             if l.bias is not None: |  | ||||
|                 l.bias.data = l.bias.data.half() |  | ||||
| 
 |  | ||||
|         if isinstance(l, nn.MultiheadAttention): |  | ||||
|             for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: |  | ||||
|                 tensor = getattr(l, attr) |  | ||||
|                 if tensor is not None: |  | ||||
|                     tensor.data = tensor.data.half() |  | ||||
| 
 |  | ||||
|         for name in ["text_projection", "proj"]: |  | ||||
|             if hasattr(l, name): |  | ||||
|                 attr = getattr(l, name) |  | ||||
|                 if attr is not None: |  | ||||
|                     attr.data = attr.data.half() |  | ||||
| 
 |  | ||||
|     model.apply(_convert_weights_to_fp16) |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| def build_model(state_dict: dict): |  | ||||
|     vit = "visual.proj" in state_dict |  | ||||
| 
 |  | ||||
|     if vit: |  | ||||
|         vision_width = state_dict["visual.conv1.weight"].shape[0] |  | ||||
|         vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) |  | ||||
|         vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] |  | ||||
|         grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) |  | ||||
|         image_resolution = vision_patch_size * grid_size |  | ||||
|     else: |  | ||||
|         counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] |  | ||||
|         vision_layers = tuple(counts) |  | ||||
|         vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] |  | ||||
|         output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) |  | ||||
|         vision_patch_size = None |  | ||||
|         assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] |  | ||||
|         image_resolution = output_width * 32 |  | ||||
| 
 |  | ||||
|     embed_dim = state_dict["text_projection"].shape[1] |  | ||||
|     context_length = state_dict["positional_embedding"].shape[0] |  | ||||
|     vocab_size = state_dict["token_embedding.weight"].shape[0] |  | ||||
|     transformer_width = state_dict["ln_final.weight"].shape[0] |  | ||||
|     transformer_heads = transformer_width // 64 |  | ||||
|     transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) |  | ||||
| 
 |  | ||||
|     model = CLIP( |  | ||||
|         embed_dim, |  | ||||
|         image_resolution, vision_layers, vision_width, vision_patch_size, |  | ||||
|         context_length, vocab_size, transformer_width, transformer_heads, transformer_layers |  | ||||
|     ) |  | ||||
| 
 |  | ||||
|     for key in ["input_resolution", "context_length", "vocab_size"]: |  | ||||
|         if key in state_dict: |  | ||||
|             del state_dict[key] |  | ||||
| 
 |  | ||||
|     convert_weights(model) |  | ||||
|     model.load_state_dict(state_dict) |  | ||||
|     return model.eval() |  | ||||
| @ -1,132 +0,0 @@ | |||||
| import gzip |  | ||||
| import html |  | ||||
| import os |  | ||||
| from functools import lru_cache |  | ||||
| 
 |  | ||||
| import ftfy |  | ||||
| import regex as re |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| @lru_cache() |  | ||||
| def default_bpe(): |  | ||||
|     return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| @lru_cache() |  | ||||
| def bytes_to_unicode(): |  | ||||
|     """ |  | ||||
|     Returns list of utf-8 byte and a corresponding list of unicode strings. |  | ||||
|     The reversible bpe codes work on unicode strings. |  | ||||
|     This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. |  | ||||
|     When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. |  | ||||
|     This is a signficant percentage of your normal, say, 32K bpe vocab. |  | ||||
|     To avoid that, we want lookup tables between utf-8 bytes and unicode strings. |  | ||||
|     And avoids mapping to whitespace/control characters the bpe code barfs on. |  | ||||
|     """ |  | ||||
|     bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) |  | ||||
|     cs = bs[:] |  | ||||
|     n = 0 |  | ||||
|     for b in range(2**8): |  | ||||
|         if b not in bs: |  | ||||
|             bs.append(b) |  | ||||
|             cs.append(2**8+n) |  | ||||
|             n += 1 |  | ||||
|     cs = [chr(n) for n in cs] |  | ||||
|     return dict(zip(bs, cs)) |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| def get_pairs(word): |  | ||||
|     """Return set of symbol pairs in a word. |  | ||||
|     Word is represented as tuple of symbols (symbols being variable-length strings). |  | ||||
|     """ |  | ||||
|     pairs = set() |  | ||||
|     prev_char = word[0] |  | ||||
|     for char in word[1:]: |  | ||||
|         pairs.add((prev_char, char)) |  | ||||
|         prev_char = char |  | ||||
|     return pairs |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| def basic_clean(text): |  | ||||
|     text = ftfy.fix_text(text) |  | ||||
|     text = html.unescape(html.unescape(text)) |  | ||||
|     return text.strip() |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| def whitespace_clean(text): |  | ||||
|     text = re.sub(r'\s+', ' ', text) |  | ||||
|     text = text.strip() |  | ||||
|     return text |  | ||||
| 
 |  | ||||
| 
 |  | ||||
| class SimpleTokenizer(object): |  | ||||
|     def __init__(self, bpe_path: str = default_bpe()): |  | ||||
|         self.byte_encoder = bytes_to_unicode() |  | ||||
|         self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} |  | ||||
|         merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') |  | ||||
|         merges = merges[1:49152-256-2+1] |  | ||||
|         merges = [tuple(merge.split()) for merge in merges] |  | ||||
|         vocab = list(bytes_to_unicode().values()) |  | ||||
|         vocab = vocab + [v+'</w>' for v in vocab] |  | ||||
|         for merge in merges: |  | ||||
|             vocab.append(''.join(merge)) |  | ||||
|         vocab.extend(['<|startoftext|>', '<|endoftext|>']) |  | ||||
|         self.encoder = dict(zip(vocab, range(len(vocab)))) |  | ||||
|         self.decoder = {v: k for k, v in self.encoder.items()} |  | ||||
|         self.bpe_ranks = dict(zip(merges, range(len(merges)))) |  | ||||
|         self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} |  | ||||
|         self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) |  | ||||
| 
 |  | ||||
|     def bpe(self, token): |  | ||||
|         if token in self.cache: |  | ||||
|             return self.cache[token] |  | ||||
|         word = tuple(token[:-1]) + ( token[-1] + '</w>',) |  | ||||
|         pairs = get_pairs(word) |  | ||||
| 
 |  | ||||
|         if not pairs: |  | ||||
|             return token+'</w>' |  | ||||
| 
 |  | ||||
|         while True: |  | ||||
|             bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) |  | ||||
|             if bigram not in self.bpe_ranks: |  | ||||
|                 break |  | ||||
|             first, second = bigram |  | ||||
|             new_word = [] |  | ||||
|             i = 0 |  | ||||
|             while i < len(word): |  | ||||
|                 try: |  | ||||
|                     j = word.index(first, i) |  | ||||
|                     new_word.extend(word[i:j]) |  | ||||
|                     i = j |  | ||||
|                 except: |  | ||||
|                     new_word.extend(word[i:]) |  | ||||
|                     break |  | ||||
| 
 |  | ||||
|                 if word[i] == first and i < len(word)-1 and word[i+1] == second: |  | ||||
|                     new_word.append(first+second) |  | ||||
|                     i += 2 |  | ||||
|                 else: |  | ||||
|                     new_word.append(word[i]) |  | ||||
|                     i += 1 |  | ||||
|             new_word = tuple(new_word) |  | ||||
|             word = new_word |  | ||||
|             if len(word) == 1: |  | ||||
|                 break |  | ||||
|             else: |  | ||||
|                 pairs = get_pairs(word) |  | ||||
|         word = ' '.join(word) |  | ||||
|         self.cache[token] = word |  | ||||
|         return word |  | ||||
| 
 |  | ||||
|     def encode(self, text): |  | ||||
|         bpe_tokens = [] |  | ||||
|         text = whitespace_clean(basic_clean(text)).lower() |  | ||||
|         for token in re.findall(self.pat, text): |  | ||||
|             token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) |  | ||||
|             bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) |  | ||||
|         return bpe_tokens |  | ||||
| 
 |  | ||||
|     def decode(self, tokens): |  | ||||
|         text = ''.join([self.decoder[token] for token in tokens]) |  | ||||
|         text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') |  | ||||
|         return text |  | ||||
					Loading…
					
					
				
		Reference in new issue
	
	