logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

53 lines
1.9 KiB

4 years ago
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import NamedTuple
from PIL import Image
import torch
from torchvision import transforms
import sys
from pathlib import Path
import numpy
4 years ago
from towhee.operator import Operator
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
4 years ago
class EfficientnetImageEmbedding(Operator):
4 years ago
"""
Embedding extractor using efficientnet.
Args:
model_name (`string`):
Model name.
weights_path (`string`):
Path to local weights.
"""
def __init__(self, model_name: str = '', framework: str = 'pytorch', weights_path: str = None) -> None:
model_name = model_name.replace('efficientnet-b', 'tf_efficientnet_b')
4 years ago
super().__init__()
sys.path.append(str(Path(__file__).parent))
if framework == 'pytorch':
import pytorch
4 years ago
from pytorch.model import Model
self.model = Model(model_name, weights_path)
config = resolve_data_config({}, model=self.model._model)
self.tfms = create_transform(**config)
4 years ago
def __call__(self, img_path: str) -> NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]):
Outputs = NamedTuple('Outputs', [('feature_vector', numpy.ndarray)])
4 years ago
img = self.tfms(Image.open(img_path)).unsqueeze(0)
features = self.model(img)
return Outputs(features.flatten().detach().numpy())