logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

49 lines
1.8 KiB

4 years ago
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import NamedTuple
from PIL import Image
import torch
from torchvision import transforms
import sys
from pathlib import Path
from towhee.operator import Operator
class EfficientnetEmbeddingOperator(Operator):
"""
Embedding extractor using efficientnet.
Args:
model_name (`string`):
Model name.
weights_path (`string`):
Path to local weights.
"""
def __init__(self, model_name: str = 'efficientnet-b7', framework: str = 'pytorch', weights_path: str = None) -> None:
super().__init__()
sys.path.append(str(Path(__file__).parent))
if framework == 'pytorch':
from pytorch.model import Model
self.model = Model(model_name, weights_path)
self.tfms = transforms.Compose([transforms.Resize(224), transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ])
def __call__(self, img_path: str) -> NamedTuple('Outputs', [('embedding', torch.Tensor)]):
Outputs = NamedTuple('Outputs', [('embedding', torch.Tensor)])
img = self.tfms(Image.open(img_path)).unsqueeze(0)
features = self.model._model.extract_features(img)
return Outputs(features.flatten().detach().numpy())