logo
Browse Source

matching embedding test output with towhee op output

main
zhang chen 4 years ago
parent
commit
5b88e2bde4
  1. 15
      efficientnet_image_embedding.py
  2. 14
      pytorch/model.py

15
efficientnet_image_embedding.py

@ -21,7 +21,8 @@ from pathlib import Path
import numpy import numpy
from towhee.operator import Operator from towhee.operator import Operator
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
class EfficientnetImageEmbedding(Operator): class EfficientnetImageEmbedding(Operator):
""" """
@ -33,17 +34,19 @@ class EfficientnetImageEmbedding(Operator):
Path to local weights. Path to local weights.
""" """
def __init__(self, model_name: str = 'efficientnet-b7', framework: str = 'pytorch', weights_path: str = None) -> None:
def __init__(self, model_name: str = '', framework: str = 'pytorch', weights_path: str = None) -> None:
model_name = model_name.replace('efficientnet-b', 'tf_efficientnet_b')
super().__init__() super().__init__()
sys.path.append(str(Path(__file__).parent)) sys.path.append(str(Path(__file__).parent))
if framework == 'pytorch': if framework == 'pytorch':
import pytorch
from pytorch.model import Model from pytorch.model import Model
self.model = Model(model_name, weights_path) self.model = Model(model_name, weights_path)
self.tfms = transforms.Compose([transforms.Resize(224), transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ])
config = resolve_data_config({}, model=self.model._model)
self.tfms = create_transform(**config)
def __call__(self, img_path: str) -> NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]): def __call__(self, img_path: str) -> NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]):
Outputs = NamedTuple('Outputs', [('feature_vector', numpy.ndarray)])
img = self.tfms(Image.open(img_path)).unsqueeze(0) img = self.tfms(Image.open(img_path)).unsqueeze(0)
features = self.model(img) features = self.model(img)
Outputs = NamedTuple('Outputs', [('feature_vector', numpy.ndarray)])
return Outputs(features)
return Outputs(features.flatten().detach().numpy())

14
pytorch/model.py

@ -13,11 +13,8 @@
# limitations under the License. # limitations under the License.
from typing import NamedTuple
import numpy
import torch import torch
from efficientnet_pytorch import EfficientNet
import timm
class Model(): class Model():
@ -26,13 +23,14 @@ class Model():
""" """
def __init__(self, model_name: str, weights_path: str): def __init__(self, model_name: str, weights_path: str):
super().__init__() super().__init__()
self._model = EfficientNet.from_pretrained(model_name=model_name, weights_path=weights_path)
self._avg_pooling = torch.nn.AdaptiveAvgPool2d((1, 1))
if weights_path:
self._model = timm.create_model(model_name, checkpoint_path=weights_path, num_classes=0)
else:
self._model = timm.create_model(model_name, pretrained=True, num_classes=0)
self._model.eval() self._model.eval()
def __call__(self, img_tensor: torch.Tensor): def __call__(self, img_tensor: torch.Tensor):
features = self._model.extract_features(img_tensor)
return self._avg_pooling(features).flatten().detach().numpy()
return self._model(img_tensor)
def train(self): def train(self):
""" """

Loading…
Cancel
Save