|
|
@ -21,7 +21,8 @@ from pathlib import Path |
|
|
|
import numpy |
|
|
|
|
|
|
|
from towhee.operator import Operator |
|
|
|
|
|
|
|
from timm.data import resolve_data_config |
|
|
|
from timm.data.transforms_factory import create_transform |
|
|
|
|
|
|
|
class EfficientnetImageEmbedding(Operator): |
|
|
|
""" |
|
|
@ -33,17 +34,19 @@ class EfficientnetImageEmbedding(Operator): |
|
|
|
Path to local weights. |
|
|
|
""" |
|
|
|
|
|
|
|
def __init__(self, model_name: str = 'efficientnet-b7', framework: str = 'pytorch', weights_path: str = None) -> None: |
|
|
|
def __init__(self, model_name: str = '', framework: str = 'pytorch', weights_path: str = None) -> None: |
|
|
|
model_name = model_name.replace('efficientnet-b', 'tf_efficientnet_b') |
|
|
|
super().__init__() |
|
|
|
sys.path.append(str(Path(__file__).parent)) |
|
|
|
if framework == 'pytorch': |
|
|
|
import pytorch |
|
|
|
from pytorch.model import Model |
|
|
|
self.model = Model(model_name, weights_path) |
|
|
|
self.tfms = transforms.Compose([transforms.Resize(224), transforms.ToTensor(), |
|
|
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) |
|
|
|
config = resolve_data_config({}, model=self.model._model) |
|
|
|
self.tfms = create_transform(**config) |
|
|
|
|
|
|
|
def __call__(self, img_path: str) -> NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]): |
|
|
|
Outputs = NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]) |
|
|
|
img = self.tfms(Image.open(img_path)).unsqueeze(0) |
|
|
|
features = self.model(img) |
|
|
|
Outputs = NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]) |
|
|
|
return Outputs(features) |
|
|
|
return Outputs(features.flatten().detach().numpy()) |
|
|
|