|
@ -43,8 +43,7 @@ class EfficientnetImageEmbedding(Operator): |
|
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) |
|
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) |
|
|
|
|
|
|
|
|
def __call__(self, img_path: str) -> NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]): |
|
|
def __call__(self, img_path: str) -> NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]): |
|
|
Outputs = NamedTuple('Outputs', [('embedding', torch.Tensor)]) |
|
|
|
|
|
img = self.tfms(Image.open(img_path)).unsqueeze(0) |
|
|
img = self.tfms(Image.open(img_path)).unsqueeze(0) |
|
|
features = self.model._model.extract_features(img) |
|
|
|
|
|
|
|
|
features = self.model(img) |
|
|
Outputs = NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]) |
|
|
Outputs = NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]) |
|
|
return Outputs(features.flatten().detach().numpy()) |
|
|
|
|
|
|
|
|
return Outputs(features) |
|
|