towhee
/
eqa-search
copied
Kaiyuan Hu
2 years ago
1 changed files with 118 additions and 0 deletions
@ -0,0 +1,118 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
from towhee import ops, pipe, AutoPipes, AutoConfig |
||||
|
|
||||
|
|
||||
|
@AutoConfig.register |
||||
|
class EnhancedQASearchConfig: |
||||
|
""" |
||||
|
Config of pipeline |
||||
|
""" |
||||
|
def __init__(self): |
||||
|
# config for sentence_embedding |
||||
|
self.model = 'all-MiniLM-L6-v2' |
||||
|
self.openai_api_key = None |
||||
|
self.normalize_vec = True |
||||
|
self.device = -1 |
||||
|
# config for search_milvus |
||||
|
self.host = '127.0.0.1' |
||||
|
self.port = '19530' |
||||
|
self.collection_name = 'chatbot' |
||||
|
self.top_k = 5 |
||||
|
self.metric_type='IP' |
||||
|
self.output_fields=['sentence'] |
||||
|
self.user = None |
||||
|
self.password = None |
||||
|
# config for similarity evaluation |
||||
|
self.threshold = 0.6 |
||||
|
# self.similarity_evaluation = 'score_filter' |
||||
|
|
||||
|
|
||||
|
_hf_models = ops.sentence_embedding.transformers().get_op().supported_model_names() |
||||
|
_sbert_models = ops.sentence_embedding.sbert().get_op().supported_model_names() |
||||
|
_openai_models = ['text-embedding-ada-002', 'text-similarity-davinci-001', |
||||
|
'text-similarity-curie-001', 'text-similarity-babbage-001', |
||||
|
'text-similarity-ada-001'] |
||||
|
|
||||
|
|
||||
|
def _get_embedding_op(config): |
||||
|
if config.device == -1: |
||||
|
device = 'cpu' |
||||
|
else: |
||||
|
device = config.device |
||||
|
|
||||
|
if config.customize_embedding_op is not None: |
||||
|
return True, config.customize_embedding_op |
||||
|
|
||||
|
if config.model in _hf_models: |
||||
|
return True, ops.sentence_embedding.transformers( |
||||
|
model_name=config.model, device=device |
||||
|
) |
||||
|
|
||||
|
if config.model in _sbert_models: |
||||
|
return True, ops.sentence_embedding.sbert( |
||||
|
model_name=config.model, device=device |
||||
|
) |
||||
|
|
||||
|
if config.model in _openai_models: |
||||
|
return False, ops.sentence_embedding.openai( |
||||
|
model_name=config.model, api_key=config.openai_api_key |
||||
|
) |
||||
|
|
||||
|
raise RuntimeError('Unknown model: [%s], only support: %s' % (config.model, _hf_models + _openai_models)) |
||||
|
|
||||
|
|
||||
|
def _get_similarity_evaluation_op(config): |
||||
|
# if config.similarity_evaluation == 'score_filter': |
||||
|
return lambda x: [i for i in x if i[1] >= config.threshold] |
||||
|
|
||||
|
|
||||
|
@AutoPipes.register |
||||
|
def enhanced_qa_search_pipe(config): |
||||
|
allow_triton, sentence_embedding_op = _get_embedding_op(config) |
||||
|
sentence_embedding_config = {} |
||||
|
if allow_triton: |
||||
|
if config.device >= 0: |
||||
|
sentence_embedding_config = AutoConfig.TritonGPUConfig(device_ids=[config.device], max_batch_size=128) |
||||
|
else: |
||||
|
sentence_embedding_config = AutoConfig.TritonCPUConfig() |
||||
|
|
||||
|
search_milvus_op = ops.ann_search.milvus_client( |
||||
|
host=config.host, |
||||
|
port=config.port, |
||||
|
collection_name=config.collection_name, |
||||
|
limit=config.top_k, |
||||
|
output_fields=config.output_fields, |
||||
|
metric_type=config.metric_type, |
||||
|
user=config.user, |
||||
|
password=config.password, |
||||
|
) |
||||
|
|
||||
|
p = ( |
||||
|
pipe.input('question', 'history') |
||||
|
.map('question', 'embedding', sentence_embedding_op, config=sentence_embedding_config) |
||||
|
) |
||||
|
|
||||
|
if config.normalize_vec: |
||||
|
p = p.map('embedding', 'embedding', ops.towhee.np_normalize()) |
||||
|
|
||||
|
p = p.map('embedding', 'result', search_milvus_op) |
||||
|
|
||||
|
# if config.similarity_evaluation: |
||||
|
if config.threshold: |
||||
|
sim_eval_op = _get_similarity_evaluation_op(config) |
||||
|
p = p.map('result', 'result', sim_eval_op) |
||||
|
|
||||
|
return p.output('question', 'history', 'result') |
Loading…
Reference in new issue