|
@ -64,6 +64,7 @@ def tn(sims: np.ndarray, |
|
|
list of temporal aligned copied segments, [query_min, ref_min, query_max, ref_max] for each segment |
|
|
list of temporal aligned copied segments, [query_min, ref_min, query_max, ref_max] for each segment |
|
|
""" |
|
|
""" |
|
|
infringe_box_list = [] |
|
|
infringe_box_list = [] |
|
|
|
|
|
infringe_score_list = [] |
|
|
path = 0 |
|
|
path = 0 |
|
|
node_pair2id = {} |
|
|
node_pair2id = {} |
|
|
node_pair2id[(-1, -1)] = 0 |
|
|
node_pair2id[(-1, -1)] = 0 |
|
@ -177,8 +178,9 @@ def tn(sims: np.ndarray, |
|
|
if ave_length > 0 and score / ave_length > min_sim and min(refer_max - refer_min, |
|
|
if ave_length > 0 and score / ave_length > min_sim and min(refer_max - refer_min, |
|
|
query_max - query_min) > min_length and ious.max() < max_iou: |
|
|
query_max - query_min) > min_length and ious.max() < max_iou: |
|
|
infringe_box_list.append([int(query_min), int(refer_min), int(query_max), int(refer_max)]) |
|
|
infringe_box_list.append([int(query_min), int(refer_min), int(query_max), int(refer_max)]) |
|
|
|
|
|
infringe_score_list.append(score / ave_length) |
|
|
path += 1 |
|
|
path += 1 |
|
|
return infringe_box_list |
|
|
|
|
|
|
|
|
return infringe_box_list, infringe_score_list |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register(output_schema=['vec']) |
|
|
@register(output_schema=['vec']) |
|
@ -199,16 +201,7 @@ class TemporalNetwork(NNOperator): |
|
|
|
|
|
|
|
|
def __call__(self, src_video_vec: 'ndarray', dst_video_vec: 'ndarray') -> float: |
|
|
def __call__(self, src_video_vec: 'ndarray', dst_video_vec: 'ndarray') -> float: |
|
|
sim_map = np.dot(src_video_vec, dst_video_vec.T) |
|
|
sim_map = np.dot(src_video_vec, dst_video_vec.T) |
|
|
res = tn(sim_map, self._tn_max_step, self._tn_top_k, self._max_path, self._min_sim, self._min_length, self._max_iou) |
|
|
|
|
|
det_scores = [] |
|
|
|
|
|
|
|
|
|
|
|
for duplicate_det in res: |
|
|
|
|
|
x1, y1, x2, y2 = duplicate_det |
|
|
|
|
|
e1, e2 = x2 - x1, y2 - y1 |
|
|
|
|
|
e = max(e1,e2) |
|
|
|
|
|
crop = sim_map[x1:x2, y1:y2] |
|
|
|
|
|
standard_crop = cv2.resize(crop, dsize=(e, e), interpolation=cv2.INTER_CUBIC) |
|
|
|
|
|
diagonal_edge = standard_crop.diagonal() |
|
|
|
|
|
det_scores.append(diagonal_edge.mean()) |
|
|
|
|
|
return res, det_scores |
|
|
|
|
|
|
|
|
ranges, scores = tn(sim_map, self._tn_max_step, self._tn_top_k, self._max_path, self._min_sim, self._min_length, self._max_iou) |
|
|
|
|
|
|
|
|
|
|
|
return ranges, scores |
|
|
|
|
|
|
|
|