bridge-former
              
                
                
            
          copied
				 6 changed files with 296 additions and 1 deletions
			
			
		@ -0,0 +1,43 @@ | 
			
		|||||
 | 
				<?xml version="1.0" encoding="UTF-8"?> | 
			
		||||
 | 
				<project version="4"> | 
			
		||||
 | 
				  <component name="ChangeListManager"> | 
			
		||||
 | 
				    <list default="true" id="d128ed7e-c047-4c04-91e2-a0ebc459482a" name="Changes" comment=""> | 
			
		||||
 | 
				      <change beforePath="$PROJECT_DIR$/README.md" beforeDir="false" afterPath="$PROJECT_DIR$/README.md" afterDir="false" /> | 
			
		||||
 | 
				    </list> | 
			
		||||
 | 
				    <option name="SHOW_DIALOG" value="false" /> | 
			
		||||
 | 
				    <option name="HIGHLIGHT_CONFLICTS" value="true" /> | 
			
		||||
 | 
				    <option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" /> | 
			
		||||
 | 
				    <option name="LAST_RESOLUTION" value="IGNORE" /> | 
			
		||||
 | 
				  </component> | 
			
		||||
 | 
				  <component name="Git.Settings"> | 
			
		||||
 | 
				    <option name="RECENT_GIT_ROOT_PATH" value="$PROJECT_DIR$" /> | 
			
		||||
 | 
				  </component> | 
			
		||||
 | 
				  <component name="MarkdownSettingsMigration"> | 
			
		||||
 | 
				    <option name="stateVersion" value="1" /> | 
			
		||||
 | 
				  </component> | 
			
		||||
 | 
				  <component name="ProjectId" id="2AufZLqWh9cOH0aaCj1PhL1W5l8" /> | 
			
		||||
 | 
				  <component name="ProjectLevelVcsManager" settingsEditedManually="true" /> | 
			
		||||
 | 
				  <component name="ProjectViewState"> | 
			
		||||
 | 
				    <option name="hideEmptyMiddlePackages" value="true" /> | 
			
		||||
 | 
				    <option name="showLibraryContents" value="true" /> | 
			
		||||
 | 
				  </component> | 
			
		||||
 | 
				  <component name="PropertiesComponent">{ | 
			
		||||
 | 
				  "keyToString": { | 
			
		||||
 | 
				    "RunOnceActivity.OpenProjectViewOnStart": "true", | 
			
		||||
 | 
				    "RunOnceActivity.ShowReadmeOnStart": "true", | 
			
		||||
 | 
				    "last_opened_file_path": "/Users/zilliz/PycharmProjects/operator/video_text_embedding/bridge-former", | 
			
		||||
 | 
				    "settings.editor.selected.configurable": "com.jetbrains.python.configuration.PyActiveSdkModuleConfigurable" | 
			
		||||
 | 
				  } | 
			
		||||
 | 
				}</component> | 
			
		||||
 | 
				  <component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" /> | 
			
		||||
 | 
				  <component name="TaskManager"> | 
			
		||||
 | 
				    <task active="true" id="Default" summary="Default task"> | 
			
		||||
 | 
				      <changelist id="d128ed7e-c047-4c04-91e2-a0ebc459482a" name="Changes" comment="" /> | 
			
		||||
 | 
				      <created>1655864445198</created> | 
			
		||||
 | 
				      <option name="number" value="Default" /> | 
			
		||||
 | 
				      <option name="presentableId" value="Default" /> | 
			
		||||
 | 
				      <updated>1655864445198</updated> | 
			
		||||
 | 
				    </task> | 
			
		||||
 | 
				    <servers /> | 
			
		||||
 | 
				  </component> | 
			
		||||
 | 
				</project> | 
			
		||||
@ -1,2 +1,115 @@ | 
			
		|||||
# bridge-former | 
				 | 
			
		||||
 | 
				# Video-Text Retrieval Embedding with BridgeFormer | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				*author: Jinling Xu* | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				<br /> | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				## Description | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				This operator extracts features for video or text with [BridgeFormer](https://arxiv.org/pdf/2201.04850.pdf) which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity. | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				<br /> | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				## Code Example | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				Load a video from path './demo_video.mp4' to generate a video embedding.  | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				Read the text 'kids feeding and playing with the horse' to generate a text embedding.  | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				 *Write the pipeline in simplified style*: | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				- Encode video (default): | 
			
		||||
 | 
				```python | 
			
		||||
 | 
				import towhee | 
			
		||||
 | 
				towhee.dc(['./demo_video.mp4']) \ | 
			
		||||
 | 
				      .video_decode.ffmpeg() \ | 
			
		||||
 | 
				      .video_text_embedding.bridge_former(model_name='frozen_model', modality='video') \ | 
			
		||||
 | 
				      .show() | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				``` | 
			
		||||
 | 
				<img src="./result1.png" width="800px"/> | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				- Encode text: | 
			
		||||
 | 
				```python | 
			
		||||
 | 
				import towhee | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				towhee.dc(['kids feeding and playing with the horse']) \ | 
			
		||||
 | 
				      .video_text_embedding.bridge_former(model_name='frozen_model', modality='text') \ | 
			
		||||
 | 
				      .show() | 
			
		||||
 | 
				``` | 
			
		||||
 | 
				<img src="./result2.png" width="800px"/> | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				*Write a same pipeline with explicit inputs/outputs name specifications:* | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				```python | 
			
		||||
 | 
				import towhee | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				towhee.dc['path'](['./demo_video.mp4']) \ | 
			
		||||
 | 
				      .video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 4}) \ | 
			
		||||
 | 
				      .runas_op['frames', 'frames'](func=lambda x: [y for y in x]) \ | 
			
		||||
 | 
				      .video_text_embedding.bridge_former['frames', 'vec'](model_name='frozen_model', modality='video') \ | 
			
		||||
 | 
				      .select['path', 'vec']() \ | 
			
		||||
 | 
				      .show(formatter={'path': 'video_path'}) | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				towhee.dc['text'](["kids feeding and playing with the horse"]) \ | 
			
		||||
 | 
				      .video_text_embedding.bridge_former['text','vec'](model_name='frozen_model', modality='text') \ | 
			
		||||
 | 
				      .select['text', 'vec']() \ | 
			
		||||
 | 
				      .show() | 
			
		||||
 | 
				``` | 
			
		||||
 | 
				<img src="./result3.png" width="800px"/> | 
			
		||||
 | 
				<img src="./result4.png" width="800px"/> | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				<br /> | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				## Factory Constructor | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				Create the operator via the following factory method | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				***bridge_former(model_name, modality, weight_path)*** | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				**Parameters:** | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				​   ***model_name:*** *str* | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				​   The model name of frozen in time. Supported model names:  | 
			
		||||
 | 
				- frozen_model | 
			
		||||
 | 
				- clip_initialized_model | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				​   ***modality:*** *str* | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				​   Which modality(*video* or *text*) is used to generate the embedding.  | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				​   ***weight_path:*** *str* | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				​   pretrained model weights path.   | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				<br /> | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				## Interface | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				An video-text embedding operator takes a list of [Towhee VideoFrame](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				**Parameters:** | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				​	***data:*** *List[towhee.types.Image]*  or *str* | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				​  The data (list of  Towhee VideoFrame (which is uniform subsampled from a video) or text based on specified modality) to generate embedding.	 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				**Returns:** *numpy.ndarray* | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				​   The data embedding extracted by model. | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
			
		|||||
@ -0,0 +1,20 @@ | 
			
		|||||
 | 
				# Copyright 2021 Zilliz. All rights reserved. | 
			
		||||
 | 
				# | 
			
		||||
 | 
				# Licensed under the Apache License, Version 2.0 (the "License"); | 
			
		||||
 | 
				# you may not use this file except in compliance with the License. | 
			
		||||
 | 
				# You may obtain a copy of the License at | 
			
		||||
 | 
				# | 
			
		||||
 | 
				#     http://www.apache.org/licenses/LICENSE-2.0 | 
			
		||||
 | 
				# | 
			
		||||
 | 
				# Unless required by applicable law or agreed to in writing, software | 
			
		||||
 | 
				# distributed under the License is distributed on an "AS IS" BASIS, | 
			
		||||
 | 
				# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
			
		||||
 | 
				# See the License for the specific language governing permissions and | 
			
		||||
 | 
				# limitations under the License. | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				from .bridge_former import BridgeFormer | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				def bridge_former(**kwargs): | 
			
		||||
 | 
				    return BridgeFormer(**kwargs) | 
			
		||||
 | 
				
 | 
			
		||||
@ -0,0 +1,100 @@ | 
			
		|||||
 | 
				import logging | 
			
		||||
 | 
				import os | 
			
		||||
 | 
				import json | 
			
		||||
 | 
				from pathlib import Path | 
			
		||||
 | 
				from typing import List, Union | 
			
		||||
 | 
				import torch | 
			
		||||
 | 
				import numpy | 
			
		||||
 | 
				from towhee import register | 
			
		||||
 | 
				from towhee.operator.base import NNOperator | 
			
		||||
 | 
				from towhee.types.video_frame import VideoFrame | 
			
		||||
 | 
				from towhee.models.utils.video_transforms import transform_video | 
			
		||||
 | 
				from towhee.models.bridgeformer import bridge_former | 
			
		||||
 | 
				from transformers import AutoTokenizer | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				from .get_configs import configs | 
			
		||||
 | 
				log = logging.getLogger() | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				@register(output_schema=['labels', 'scores', 'features']) | 
			
		||||
 | 
				class BridgeFormer(NNOperator): | 
			
		||||
 | 
				    """ | 
			
		||||
 | 
				    extracts features for video or text with BridgeFormer model | 
			
		||||
 | 
				    Args: | 
			
		||||
 | 
				        model_name (str): | 
			
		||||
 | 
				            BridgeFormer model name to be used in BridgeFormer | 
			
		||||
 | 
				        modality (str): | 
			
		||||
 | 
				            Flag to decide what to return | 
			
		||||
 | 
				                - 'video': return video embedding | 
			
		||||
 | 
				                - 'text': return a dense of text embeddings | 
			
		||||
 | 
				        weights_path (str): | 
			
		||||
 | 
				            Pretrained model weights | 
			
		||||
 | 
				    """ | 
			
		||||
 | 
				    def __init__(self, | 
			
		||||
 | 
				                 model_name: str = "frozen_model", | 
			
		||||
 | 
				                 modality: str = 'video', | 
			
		||||
 | 
				                 weights_path: str = None, | 
			
		||||
 | 
				                 framework: str = "pytorch", | 
			
		||||
 | 
				                 skip_preprocess: bool = False, | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				                 ): | 
			
		||||
 | 
				        super().__init__(framework=framework) | 
			
		||||
 | 
				        self.model_name = model_name | 
			
		||||
 | 
				        self.skip_preprocess = skip_preprocess | 
			
		||||
 | 
				        self.modality = modality | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				        self.device = "cuda" if torch.cuda.is_available() else "cpu" | 
			
		||||
 | 
				        if weights_path is None: | 
			
		||||
 | 
				            weights_name = {"clip_initialized_model": "MCQ_CLIP.pth", "frozen_model": "MCQ.pth"} | 
			
		||||
 | 
				            weights_path = os.path.join(str(Path(__file__).parent), weights_name[self.model_name]) | 
			
		||||
 | 
				        self.model = bridge_former.create_model(pretrained=True, | 
			
		||||
 | 
				                                                weights_path=weights_path, | 
			
		||||
 | 
				                                                model_name=self.model_name) | 
			
		||||
 | 
				        self.tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased', TOKENIZERS_PARALLELISM=False) | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				        self.transform_cfgs = configs(self.model_name) | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    def decoder_video(self,  data: List[VideoFrame]): | 
			
		||||
 | 
				        # Convert list of towhee.types.Image to numpy.ndarray in float32 | 
			
		||||
 | 
				        video = numpy.stack([img.astype(numpy.float32) / 255. for img in data], axis=0) | 
			
		||||
 | 
				        assert len(video.shape) == 4 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				        video = video.transpose(3, 0, 1, 2)  # thwc -> cthw | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				        video = transform_video( | 
			
		||||
 | 
				            video=video, | 
			
		||||
 | 
				            **self.transform_cfgs | 
			
		||||
 | 
				        ) | 
			
		||||
 | 
				        # [B x C x T x H x W] | 
			
		||||
 | 
				        video = video.to(self.device)[None, ...] | 
			
		||||
 | 
				        return video | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    def __call__(self, data: Union[List[VideoFrame], List[str]]): | 
			
		||||
 | 
				        if self.modality == 'video': | 
			
		||||
 | 
				            vec = self._inference_from_video(data) | 
			
		||||
 | 
				        elif self.modality == 'text': | 
			
		||||
 | 
				            vec = self._inference_from_text(data) | 
			
		||||
 | 
				        else: | 
			
		||||
 | 
				            raise ValueError("modality[{}] not implemented.".format(self._modality)) | 
			
		||||
 | 
				        return vec | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    def _inference_from_text(self, text: List[str]): | 
			
		||||
 | 
				        text_data = self.tokenizer(text, return_tensors='pt') | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				        text_data = text_data.to(self.device) | 
			
		||||
 | 
				        if self.model_name == "clip_initialized_model": | 
			
		||||
 | 
				            text_features = self.model.encode_text(text_data["input_ids"]) | 
			
		||||
 | 
				        else: | 
			
		||||
 | 
				            text_features = self.model.compute_text(text_data) | 
			
		||||
 | 
				        return text_features.squeeze(0).detach().flatten().cpu().numpy() | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    def _inference_from_video(self, data: List[VideoFrame]): | 
			
		||||
 | 
				        # [B x T x C x H x W] | 
			
		||||
 | 
				        video = self.decoder_video(data).transpose(1, 2) | 
			
		||||
 | 
				        if self.model_name == "clip_initialized_model": | 
			
		||||
 | 
				            visual_features = self.model.encode_image(video) | 
			
		||||
 | 
				        else: | 
			
		||||
 | 
				            visual_features = self.model.compute_video(video) | 
			
		||||
 | 
				        return visual_features.squeeze(0).detach().flatten().cpu().numpy() | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
								
									Binary file not shown.
								
							
						
					@ -0,0 +1,19 @@ | 
			
		|||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				def configs(model_name): | 
			
		||||
 | 
				    args = { | 
			
		||||
 | 
				        'clip_initialized_model': | 
			
		||||
 | 
				            {"side_size": 224, | 
			
		||||
 | 
				             "crop_size": 256, | 
			
		||||
 | 
				             "num_frames": 8, | 
			
		||||
 | 
				             "mean": [0.48145466, 0.4578275, 0.40821073], | 
			
		||||
 | 
				             "std": [0.26862954, 0.26130258, 0.27577711]}, | 
			
		||||
 | 
				        'frozen_model': | 
			
		||||
 | 
				            {"side_size": 224, | 
			
		||||
 | 
				             "crop_size": 256, | 
			
		||||
 | 
				             "num_frames": 4, | 
			
		||||
 | 
				             "mean": [0.485, 0.456, 0.406], | 
			
		||||
 | 
				             "std": [0.229, 0.224, 0.225], } | 
			
		||||
 | 
				    } | 
			
		||||
 | 
				    return args[model_name] | 
			
		||||
 | 
				
 | 
			
		||||
					Loading…
					
					
				
		Reference in new issue