logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

Updated 2 years ago

video-text-embedding

Video-Text Retrieval Embdding with CLIP4Clip

author: Chen Zhang


Description

This operator extracts features for video or text with CLIP4Clip which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity.


Code Example

Load an video from path './demo_video.mp4' to generate an video embedding.

Read the text 'kids feeding and playing with the horse' to generate an text embedding.

Write the pipeline in simplified style:

from towhee.dc2 import pipe, ops, DataCollection

p = (
    pipe.input('text') \
        .map('text', 'vec', ops.video_text_embedding.clip4clip(model_name='clip_vit_b32', modality='text', device='cuda:1')) \
        .output('text', 'vec')
)

DataCollection(p('kids feeding and playing with the horse')).show()

from towhee.dc2 import pipe, ops, DataCollection

p = (
    pipe.input('video_path') \
        .map('video_path', 'flame_gen', ops.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 12})) \
        .map('flame_gen', 'flame_list', lambda x: [y for y in x]) \
        .map('flame_list', 'vec', ops.video_text_embedding.clip4clip(model_name='clip_vit_b32', modality='video', device='cuda:2')) \
        .output('video_path', 'flame_list', 'vec')
)

DataCollection(p('./demo_video.mp4')).show()


Factory Constructor

Create the operator via the following factory method

clip4clip(model_name, modality, weight_path)

Parameters:

model_name: str

​ The model name of CLIP. Supported model names:

  • clip_vit_b32

modality: str

​ Which modality(video or text) is used to generate the embedding.

weight_path: str

​ pretrained model weights path.


Interface

An video-text embedding operator takes a list of towhee image or string as input and generate an embedding in ndarray.

Parameters:

data: List[towhee.types.Image] or str

​ The data (list of image(which is uniform subsampled from a video) or text based on specified modality) to generate embedding.

Returns: numpy.ndarray

​ The data embedding extracted by model.

ChengZi 8f995ddfd5 update readme with dc2 11 Commits
file-icon .gitattributes
1.1 KiB
download-icon
Initial commit 3 years ago
file-icon README.md
2.3 KiB
download-icon
update readme with dc2 2 years ago
file-icon __init__.py
739 B
download-icon
modify factory 3 years ago
file-icon clip4clip.py
4.5 KiB
download-icon
modify factory 3 years ago
file-icon demo_video.mp4
950 KiB
download-icon
modifty 3 years ago
file-icon pytorch_model.bin.1
337 MiB
download-icon
model 3 years ago
file-icon requirements.txt
0 B
download-icon
init 3 years ago
file-icon text_emb_output.png
14 KiB
download-icon
update readme with dc2 2 years ago
file-icon video_emb_ouput.png
31 KiB
download-icon
update readme with dc2 2 years ago