copied
Readme
Files and versions
Updated 3 years ago
video-text-embedding
Video-Text Retrieval Embedding with DRL
author: Chen Zhang
Description
This operator extracts features for video or text with DRL(Disentangled Representation Learning for Text-Video Retrieval), and then it can get the similarity by Weighted Token-wise Interaction (WTI) module.
Code Example
Load an video from path './demo_video.mp4' to generate a video embedding.
Read the text 'kids feeding and playing with the horse' to generate a text embedding.
Write the pipeline in simplified style:
import towhee
towhee.dc(['./demo_video.mp4']) \
    .video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 12}) \
    .runas_op(func=lambda x: [y for y in x]) \
    .drl(base_encoder='clip_vit_b32', modality='video', device='cpu') \
    .show()
towhee.dc(['kids feeding and playing with the horse']) \
    .drl(base_encoder='clip_vit_b32', modality='text', device='cpu') \
    .show()
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.dc['path'](['./demo_video.mp4']) \
        .video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 12}) \
        .runas_op['frames', 'frames'](func=lambda x: [y for y in x]) \
        .drl['frames', 'vec'](base_encoder='clip_vit_b32', modality='video', device='cpu') \
        .show(formatter={'path': 'video_path'})
towhee.dc['text'](['kids feeding and playing with the horse']) \
      .drl['text','vec'](base_encoder='clip_vit_b32', modality='text', device='cpu') \
      .select['text', 'vec']() \
      .show()
Factory Constructor
Create the operator via the following factory method
drl(base_encoder, modality)
Parameters:
 base_encoder: str
 The base CLIP encode name in DRL model. Supported model names:
- clip_vit_b32
 modality: str
 Which modality(video or text) is used to generate the embedding.
Interface
An video-text embedding operator takes a list of towhee VideoFrame or string as input and generate an embedding in ndarray.
Parameters:
 data: List[towhee.types.VideoFrame] or str
 The data (list of VideoFrame(which is uniform subsampled from a video) or text based on specified modality) to generate embedding.
Returns: numpy.ndarray
 The data embedding extracted by model. When text, the shape is (text_token_num, model_dim), when video, the shape is (video_token_num, model_dim)
|  | 4 Commits | ||
|---|---|---|---|
|  | 
												1.2 KiB
											 | 3 years ago | |
|  | 
												2.7 KiB
											 | 3 years ago | |
|  | 
												82 KiB
											 | 3 years ago | |
|  | 
												719 B
											 | 3 years ago | |
|  | 
												388 MiB
											 | 3 years ago | |
|  | 
												950 KiB
											 | 3 years ago | |
|  | 
												5.0 KiB
											 | 3 years ago | |
|  | 
												58 B
											 | 3 years ago | |
|  | 
												15 KiB
											 | 3 years ago | |
|  | 
												585 KiB
											 | 3 years ago | |
|  | 
												18 KiB
											 | 3 years ago | |
|  | 
												16 KiB
											 | 3 years ago | |
 
  



