copied
Readme
Files and versions
Updated 3 years ago
video-text-embedding
Video-Text Retrieval Embedding with DRL
author: Chen Zhang
Description
This operator extracts features for video or text with DRL(Disentangled Representation Learning for Text-Video Retrieval), and then it can get the similarity by Weighted Token-wise Interaction (WTI) module.
Code Example
Load an video from path './demo_video.mp4' to generate a video embedding.
Read the text 'kids feeding and playing with the horse' to generate a text embedding.
Write the pipeline in simplified style:
import towhee
towhee.dc(['./demo_video.mp4']) \
.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 12}) \
.runas_op(func=lambda x: [y for y in x]) \
.drl(base_encoder='clip_vit_b32', modality='video', device='cpu') \
.show()
towhee.dc(['kids feeding and playing with the horse']) \
.drl(base_encoder='clip_vit_b32', modality='text', device='cpu') \
.show()
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.dc['path'](['./demo_video.mp4']) \
.video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 12}) \
.runas_op['frames', 'frames'](func=lambda x: [y for y in x]) \
.drl['frames', 'vec'](base_encoder='clip_vit_b32', modality='video', device='cpu') \
.show(formatter={'path': 'video_path'})
towhee.dc['text'](['kids feeding and playing with the horse']) \
.drl['text','vec'](base_encoder='clip_vit_b32', modality='text', device='cpu') \
.select['text', 'vec']() \
.show()
Factory Constructor
Create the operator via the following factory method
drl(base_encoder, modality)
Parameters:
base_encoder: str
The base CLIP encode name in DRL model. Supported model names:
- clip_vit_b32
modality: str
Which modality(video or text) is used to generate the embedding.
Interface
An video-text embedding operator takes a list of towhee VideoFrame or string as input and generate an embedding in ndarray.
Parameters:
data: List[towhee.types.VideoFrame] or str
The data (list of VideoFrame(which is uniform subsampled from a video) or text based on specified modality) to generate embedding.
Returns: numpy.ndarray
The data embedding extracted by model. When text, the shape is (text_token_num, model_dim), when video, the shape is (video_token_num, model_dim)
| 2 Commits | ||
---|---|---|---|
|
1.1 KiB
|
3 years ago | |
|
2.7 KiB
|
3 years ago | |
|
82 KiB
|
3 years ago | |
|
719 B
|
3 years ago | |
|
950 KiB
|
3 years ago | |
|
3.7 KiB
|
3 years ago | |
|
52 B
|
3 years ago | |
|
15 KiB
|
3 years ago | |
|
585 KiB
|
3 years ago | |
|
18 KiB
|
3 years ago | |
|
16 KiB
|
3 years ago |