copied
Readme
Files and versions
2.4 KiB
Video-Text Retrieval Embedding with DRL
author: Chen Zhang
Description
This operator extracts features for video or text with DRL(Disentangled Representation Learning for Text-Video Retrieval), and then it can get the similarity by Weighted Token-wise Interaction (WTI) module.
Code Example
Read the text 'kids feeding and playing with the horse' to generate a text embedding.
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('text') \
.map('text', 'vec', ops.video_text_embedding.drl(base_encoder='clip_vit_b32', modality='text', device='cuda:0')) \
.output('text', 'vec')
)
DataCollection(p('kids feeding and playing with the horse')).show()
Load an video from path './demo_video.mp4' to generate a video embedding.
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('video_path') \
.map('video_path', 'flame_gen', ops.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 12})) \
.map('flame_gen', 'flame_list', lambda x: [y for y in x]) \
.map('flame_list', 'vec', ops.video_text_embedding.drl(base_encoder='clip_vit_b32', modality='video', device='cuda:0')) \
.output('video_path', 'flame_list', 'vec')
)
DataCollection(p('./demo_video.mp4')).show()
Factory Constructor
Create the operator via the following factory method
drl(base_encoder, modality)
Parameters:
base_encoder: str
The base CLIP encode name in DRL model. Supported model names:
- clip_vit_b32
modality: str
Which modality(video or text) is used to generate the embedding.
Interface
An video-text embedding operator takes a list of towhee VideoFrame or string as input and generate an embedding in ndarray.
Parameters:
data: List[towhee.types.VideoFrame] or str
The data (list of VideoFrame(which is uniform subsampled from a video) or text based on specified modality) to generate embedding.
Returns: numpy.ndarray
The data embedding extracted by model. When text, the shape is (text_token_num, model_dim), when video, the shape is (video_token_num, model_dim)
2.4 KiB
Video-Text Retrieval Embedding with DRL
author: Chen Zhang
Description
This operator extracts features for video or text with DRL(Disentangled Representation Learning for Text-Video Retrieval), and then it can get the similarity by Weighted Token-wise Interaction (WTI) module.
Code Example
Read the text 'kids feeding and playing with the horse' to generate a text embedding.
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('text') \
.map('text', 'vec', ops.video_text_embedding.drl(base_encoder='clip_vit_b32', modality='text', device='cuda:0')) \
.output('text', 'vec')
)
DataCollection(p('kids feeding and playing with the horse')).show()
Load an video from path './demo_video.mp4' to generate a video embedding.
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('video_path') \
.map('video_path', 'flame_gen', ops.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 12})) \
.map('flame_gen', 'flame_list', lambda x: [y for y in x]) \
.map('flame_list', 'vec', ops.video_text_embedding.drl(base_encoder='clip_vit_b32', modality='video', device='cuda:0')) \
.output('video_path', 'flame_list', 'vec')
)
DataCollection(p('./demo_video.mp4')).show()
Factory Constructor
Create the operator via the following factory method
drl(base_encoder, modality)
Parameters:
base_encoder: str
The base CLIP encode name in DRL model. Supported model names:
- clip_vit_b32
modality: str
Which modality(video or text) is used to generate the embedding.
Interface
An video-text embedding operator takes a list of towhee VideoFrame or string as input and generate an embedding in ndarray.
Parameters:
data: List[towhee.types.VideoFrame] or str
The data (list of VideoFrame(which is uniform subsampled from a video) or text based on specified modality) to generate embedding.
Returns: numpy.ndarray
The data embedding extracted by model. When text, the shape is (text_token_num, model_dim), when video, the shape is (video_token_num, model_dim)